首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

2.
Receptor tyrosine phosphatases in axon growth and guidance   总被引:3,自引:0,他引:3  
Receptor-like protein tyrosine phosphatases (RPTPs) continue to emerge as important signalling molecules in axons and their growth cones. Recent findings show that Drosophila RPTPs play key roles in guiding retinal axons and in preventing midline crossing of longitudinal axons. Vertebrate RPTPs are now implicated in controlling axon outgrowth, and preliminary evidence suggests that they too may influence axon guidance.  相似文献   

3.
Neural receptor-linked protein tyrosine phosphatases (RPTPs) are required for guidance of motoneuron and photoreceptor growth cones in Drosophila. These phosphatases have not been implicated in growth cone responses to specific guidance cues, however, so it is unknown which aspects of axonal pathfinding are controlled by their activities. Three RPTPs, known as DLAR, DPTP69D, and DPTP99A, have been genetically characterized thus far. Here we report the isolation of mutations in the fourth neural RPTP, DPTP10D. The analysis of double mutant phenotypes shows that DPTP10D and DPTP69D are necessary for repulsion of growth cones from the midline of the embryonic central nervous system. Repulsion is thought to be triggered by binding of the secreted protein Slit, which is expressed by midline glia, to Roundabout (Robo) receptors on growth cones. Robo repulsion is downregulated by the Commissureless (Comm) protein, allowing axons to cross the midline. Here we show that the Rptp mutations genetically interact with robo, slit and comm. The nature of these interactions suggests that DPTP10D and DPTP69D are positive regulators of Slit/Roundabout repulsive signaling. We also show that elimination of all four neural RPTPs converts most noncrossing longitudinal pathways into commissures that cross the midline, indicating that tyrosine phosphorylation controls the manner in which growth cones respond to midline signals.  相似文献   

4.
In this study, we identified water-soluble C60 and C70 fullerene derivatives as a novel class of protein tyrosine phosphatase inhibitors. The evaluated compounds were found to inhibit CD45, PTP1B, TC-PTP, SHP2, and PTPβ with IC50 values in the low micromolar to high nanomolar range. These results demonstrate a new strategy for designing effective nanoscale protein tyrosine phosphatase inhibitors.  相似文献   

5.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression.  相似文献   

6.
It is well established that the neuropeptide gonadotropin-releasing hormone (GnRH) regulates the secretion of pituitary gonadotropins. Evidence also suggests a neuromodulatory role for GnRH, yet its mechanism is unknown. It has recently been shown that in the medaka genome, the GnRH II and GnRH III genes reside adjoining the genes encoding protein tyrosine phosphatase alpha (PTPalpha) and PTP, respectively. Here we isolated and characterized PTPalpha and PTP in the medaka, and demonstrated using an in vitro medaka whole-brain culture system that GnRH downregulates the PTPalpha/PTP gene expression. This finding, together with the fact that PTPalpha/PTP regulate neuronal excitability through interacting with voltage-gated potassium channel, suggests that GnRH gene products would act as neuromodulators via downregulating their neighboring PTPalpha/PTP genes.  相似文献   

7.
An assay method that continuously measures the protein tyrosine phosphatase (PTP)-catalyzed dephosphorylation reaction based on fluorescence resonance energy transfer (FRET) was developed as an improvement of our previously reported discontinuous version [M. Nishikata, K. Suzuki, Y. Yoshimura, Y. Deyama, A. Matsumoto, Biochem. J. 343 (1999) 385-391]. The assay uses oligopeptide substrates that contain (7-methoxycoumarin-4-yl)acetyl (Mca) group as a fluorescence donor and 2,4-dinitrophenyl (DNP) group as a fluorescence acceptor, in addition to a phosphotyrosine residue located between these two groups. In the assay, a PTP solution is added to a buffer solution containing a FRET substrate and chymotrypsin. The PTP-catalyzed dephosphorylation of the substrate and subsequent chymotryptic cleavage of the dephosphorylated substrate results in a disruption of FRET, thereby increasing Mca fluorescence. In this study, we used FRET substrates that are much more susceptible to chymotryptic cleavage after dephosphorylation than the substrate used in our discontinuous assay, thus enabling the continuous assay without significant PTP inactivation by chymotrypsin. The rate of fluorescence increase strictly reflected the rate of dephosphorylation at appropriate chymotrypsin concentrations. Since the continuous assay allows the measurement of initial rate of dephosphorylation reaction, kinetic parameters for the dephosphorylation reactions of FRET substrates by Yersinia, T-cell and LAR PTPs were determined. The continuous assay was compatible with the measurement of very low PTP activity in a crude enzyme preparation and was comparable in sensitivity to assays that use radiolabeled substrates.  相似文献   

8.
Receptor protein tyrosine phosphatases (RPTPs) are regulators of axon outgrowth and guidance in a variety of different vertebrate and invertebrate systems. Three RPTPs, CRYP-alpha, PTP-delta, and LAR, are expressed in overlapping but distinct patterns in the developing Xenopus retina, including expression in retinal ganglion cells (RGCs) as they send axons to the tectum (Johnson KG, Holt CE. 2000. Expression of CRYP-alpha, LAR, PTP-delta, and PTP-rho in the developing Xenopus visual system. Mech Dev 92:291-294). In order to examine the role of these RPTPs in visual system development, putative dominant negative RPTP mutants (CS-CRYP-alpha, CS-PTP-delta, and CS-LAR) were expressed either singly or in combination in retinal cells. No effect was found on either retinal cell fate determination or on gross RGC axon guidance to the tectum. However, expression of these CS-RPTP constructs differentially affected the rate of RGC axon outgrowth. In vivo, expression of all three CS-RPTPs or CS-PTP-delta alone inhibited RGC axon outgrowth, while CS-LAR and CS-CRYP-alpha had no significant effect. In vitro, expression of CS-CRYP-alpha enhanced neurite outgrowth, while CS-PTP-delta inhibited neurite outgrowth in a substrate-dependent manner. This study provides the first in vivo evidence that RPTPs regulate retinal axon outgrowth.  相似文献   

9.
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents.  相似文献   

10.
糖尿病是由于胰岛素分泌不足或胰岛素抵抗引起的以血糖升高为特征的代谢性疾病。有研究发现一些蛋白酪氨酸磷酸酶(proteintyrosine phosphatases,PTP)在胰岛素受体信号途径、胰岛素分泌和胰腺β细胞受自身免疫细胞攻击等生理或病理过程中起重要作用。以PTP1B、TCPTP和LYP为代表的PTP通过将底物去磷酸化,拮抗激酶催化的磷酸化反应,在一些信号通路中起到负相调节的作用。在糖尿病患者中发现这些PTP的单核苷酸突变使蛋白表达增加或酶活力增强,因而施用这些潜在靶蛋白的小分子抑制剂成为治疗1型或2型糖尿病可能的新疗法。而PTPIA-2/IA-2β的胞内磷酸酶结构域被发现是大量1型糖尿病患者的自身免疫原,因此可针对PTPIA-2/IA-2β发展早期诊断并预防1型糖尿病的试剂盒。  相似文献   

11.
The production of recombinant proteins in Escherichia coli involves substantial optimization in the size of the protein and over-expression strategies to avoid inclusion-body formation. Here we report our observations on this so-called construct dependence using the catalytic domains of five Drosophila melanogaster receptor protein tyrosine phosphatases as a model system. Five strains of E. coli as well as three variations in purification tags viz., poly-histidine peptide attachments at the N- and C-termini and a construct with Glutathione-S-transferase at the N-terminus were examined. In this study we observe that inclusion of a 45 residue stretch at the N-terminus was crucial for over-expression of the enzymes, influencing both the solubility and the stability of these recombinant proteins. While the addition of negatively charged residues in the N-terminal extension could partially rationalize the improvement in the solubility of these constructs, conventional parameters like the proportion of order promoting residues or aliphatic index did not correlate with the improved biochemical characteristics. These findings thus suggest the inclusion of additional parameters apart from rigid domain predictions to obtain domain constructs that are most likely to yield soluble protein upon expression in E. coli.  相似文献   

12.
13.
In the present work, the derivatives of calix[4]arene, thiacalix[4]arene, and sulfonylcalix[4]arene bearing four methylene(phenyl)phosphinic acid groups on the upper rim of the macrocycle were synthesized and studied as inhibitors of human protein tyrosine phosphatases. The inhibitory capacities of the three compounds towards PTP1B were higher than those for protein tyrosine phosphatases TC–PTP, MEG1, MEG2, and SHP2. The most potent sulfonylcalix[4]arene phosphinic acid displayed Ki value of 32?nM. The thiacalix[4]arene phosphinic acid was found to be a low micromolar inhibitor of PTP1B with selectivity over the other PTPs. The kinetic experiments showed that the inhibitors compete with the substrate for the active site of the enzyme. Molecular docking was performed to explain possible binding modes of the calixarene-based phosphinic inhibitors of PTP1B.  相似文献   

14.
TULA proteins regulate activity of the protein tyrosine kinase Syk   总被引:1,自引:0,他引:1  
TULA belongs to a two-member family: TULA (STS-2) is a lymphoid protein, whereas STS-1/TULA-2 is expressed ubiquitously. TULA proteins were implicated in the regulation of signaling mediated by protein tyrosine kinases (PTKs). The initial experiments did not fully reveal the molecular mechanism of these effects, but suggested that both TULA proteins act in a similar fashion. It was shown recently that STS-1/TULA-2 dephosphorylates PTKs. In this study, we analyzed the effects of TULA proteins on Syk, a PTK playing an important role in lymphoid signaling. First, we have shown that TULA-2 decreases tyrosine phosphorylation of Syk in vivo and in vitro and that the intact phosphatase domain of TULA-2 is essential for this effect. We have also shown that TULA-2 exhibits a certain degree of substrate specificity. Our results also indicate that inactivated TULA-2 increases tyrosine phosphorylation of Syk in cells co-transfected to overexpress these proteins, thus acting as a dominant-negative form that suppresses dephosphorylation of Syk caused by endogenous TULA-2. Furthermore, we have demonstrated that phosphatase activity of TULA is negligible as compared to that of TULA-2 and that this finding correlates with an increase in Syk tyrosine phosphorylation in cells overexpressing TULA. This result is consistent with the dominant-negative effect of inactivated TULA-2, arguing that TULA acts in this system as a negative regulator of TULA-2-dependent dephosphorylation. To summarize, our findings indicate that TULA proteins may exert opposite effects on PTK-mediated signaling and suggest that a regulatory mechanism based on this feature may exist.  相似文献   

15.
Cho SH  Lee CH  Ahn Y  Kim H  Kim H  Ahn CY  Yang KS  Lee SR 《FEBS letters》2004,560(1-3):7-13
Protein tyrosine phosphatase (PTP) is a family of enzymes important for regulating cellular phosphorylation state. The oxidation and consequent inactivation of several PTPs by H2O2 are well demonstrated. It is also shown that recovery of enzymatic activity depends on the availability of cellular reductants. Among these redox-regulated PTPs, PTEN, Cdc25 and low molecular weight PTP are known to form a disulfide bond between two cysteines, one in the active site and the other nearby, during oxidation by H2O2. The disulfide bond likely confers efficiency in the redox regulation of the PTPs and protects cysteine-sulfenic acid of PTPs from further oxidation. In this review, through a comparative analysis of the oxidation process of Yap1 and PTPs, we propose the mechanism of disulfide bond formation in the PTPs.  相似文献   

16.
In human type 2 diabetes, loss of glucose-stimulated insulin exocytosis from the pancreatic beta-cell is an early pathogenetic event. Mechanisms controlling insulin exocytosis are, however, not fully understood. We show here that inositol hexakisphosphate (InsP(6)), whose concentration transiently increases upon glucose stimulation, dose-dependently and differentially inhibits enzyme activities of ser/thr protein phosphatases in physiologically relevant concentrations. None of the hypoglycemic sulfonylureas tested affected protein phosphatase-1 or -2A activity at clinically relevant concentrations in these cells. Thus, an increase in cellular phosphorylation state, through inhibition of protein dephosphorylation by InsP(6), may be a novel regulatory mechanism linking glucose-stimulated polyphosphoinositide formation to insulin exocytosis in insulin-secreting cells.  相似文献   

17.
AIM: To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration.METHODS: Gastric lesions were induced in rats using restraint cold stress. To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair, total activity of protein tyrosine kinase (PTK), protein tyrosine phosphatase (PTP), antioxidant enzymes, nitric oxide synthase (NOS), 2’,5’-oligoadenylate synthetase, hydroxyl radical and zinc levels were assayed in parallel.RESULTS: Ulcer provocation induced an immediate decrease in tyrosine kinase (40% in plasma membranes and 56% in cytosol, P < 0.05) and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol), followed by 2.3-2.4-fold decrease (P < 0.05) in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD) activity, 30% increase (P < 0.05) in catalase activity, 2.3-fold inhibition (P < 0.05) of glutathione peroxidase, 3.3-fold increase (P < 0.05) in hydroxyl radical content, and 2.3-fold decrease (P < 0.05) in zinc level in gastric mucosa. NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration, PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase, P < 0.05), but remained inhibited (1.6-3-fold decrease on days 3, 4 and 5, P < 0.05) in the cytosol. Tyrosine phosphatases remained inhibited both in membranes and cytosol (1.5-2.4-fold, P < 0.05). NOS activity remained increased on days 1, 2 and 3 (3.8-, 2.6-, 2.2-fold, respectively, P < 0.05). Activity of SOD increased 1.6 times (P < 0.05) days 4 and 5 after stress. Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3- and 2-fold, respectively, P < 0.05) on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P < 0.05) at the beginning, and 1.6-2.3-fold (P < 0.05) during ulcer recuperation, and normalized on day 5, consistent with slowing of inflammation processes.CONCLUSION: These studies show diverse changes in total tyrosine kinase activity in gastric mucosa during the recovery process. Oxidative and nitrosative stress during lesion formation might lead to the observed reduction in tyrosine phosphorylation during ulceration.  相似文献   

18.
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.  相似文献   

19.
Protein tyrosine phosphatases in higher plants   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号