首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An immunoglobulin M (IgM) monoclonal antibody (mAb Elec-39), obtained against asymmetric acetylcholinesterase (AChE) from Electrophorus electric organs, also reacts with a fraction of globular AChE (amphiphilic G2 form) from Torpedo electric organs. This antibody does not react with asymmetric AChE from Torpedo electric organs or with the enzyme from other tissues of Electrophorus or Torpedo. The corresponding epitope is removed by endoglycosidase F, showing that it is a carbohydrate. The subsets of Torpedo G2 that react or do not react with Elec-39 (Elec-39+ and Elec-39-) differ in their electrophoretic mobility under nondenaturing conditions; the Elec-39+ component also binds the lectins from Pisum sativum and Lens culinaris. Whereas the Elec-39- component is present at the earliest developmental stages examined, an Elec-39+ component becomes distinguishable only around the 70-mm stage. Its proportion increases progressively, but later than the rapid accumulation of the total G2 form. In immunoblots, mAb Elec-39 recognizes a number of proteins other than AChE from various tissues of several species. The specificity of Elec-39 resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1, NSP-4, as well as IgMs that occur in human neuropathies. Although some human neuropathy IgMs that recognize the myelin-associated glycoprotein did not react with Elec-39+ AChE, mAbs HNK-1, NC-1, and NSP-4 showed the same selectivity as Elec-39 for Torpedo G2 AChE, but differed in the formation of immune complexes.  相似文献   

2.
Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.  相似文献   

3.
A presynaptic plasma membrane fraction was purified after subfractionation of pure cholinergic synaptosomes prepared from Torpedo electric organ. Two 67 kdalton proteins were highly enriched in the synaptosomal plasma membrane (SPM): the hydrophobic form of AChE and a protein against which we raised a monoclonal antibody (C1–8). These two proteins exhibit similar biochemical properties: both exist as disulphide linked dimers with the same molecular weight; they are glycoproteins binding Concanavalin A; they are exposed on the external surface of the SPM and detached as almost entire molecules by Pronase. Nevertheless, using the C1–8 monoclonal antibody, it was possible to show that they are different proteins. The C1–8 binding protein appears to be specific for the SPM in Torpedo electric organ since it was not detected in plasma membranes from the electroplaque, the electric nerve trunks or the electric lobe. The hydrophobic AChE and the C1–8 binding protein appear therefore to be useful markers of the SPM. Pronase treatment of intact synaptosomes removes most of the ectocellularly exposed proteins of the SPM, which amount to 35% of the SPM protein. Presynaptic AChE and the C1–8 binding protein are detached. But ACh release can still be induced by depolarization of the Pronase treated synaptosomes. This demonstrates that the two 67 kdalton presynaptic proteins are not directly involved in the release of the neurotransmitter.  相似文献   

4.
1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ.  相似文献   

5.
In Torpedo, PNS as well as CNS myelines are characterized by clearly separated double intraperiod lines. CNS myelin of Torpedo contains two glycosylated hydrophobic proteins labelled T1 (25,800 Da1) and T2 (29,700 Da1), and two basic proteins BP1 and BP2, migrating like mammalian large basic protein (BP2) and pre-small basic protein (BP1) (Barbarese et al., 1977). PNS myelin of Torpedo carries only BP1 and is characterized by a closely spaced doublet of the glycosylated hydrophobic proteins Con A+ (29,700 Da1) and Con A? (31,000 Da1); the latter does not bind Concanavalin A. These glycosylated proteins (T1, T2, Con A+, Con A?) contain mannose, N-acetylglucosamine and galactose, but lack fucose and sialic acids. They have isoleucine at their amino terminus. They bind anti-rat PNS myelin P0 antibodies but do not react with anti-rat CNS myelin PLP antibodies. Limited proteolyses of isolated proteins suggest sequence homologies between T1 and T2, and possibly between Con A+ and Con A?. The two basic proteins BP1 and BP2 bind antibodies directed against human myelin basic protein. All Torpedo myelin proteins electrofocus in pH regions characteristic of their mammalian counterparts.  相似文献   

6.
Abstract: Several monoclonal antibodies were raised against chicken acetylcholinesterase (AChE; EC 3.1.1.7). Some of these antibodies react with quail AChE but not with AChEs from nonavian vertebrates or invertebrates and not with butyrylcholinesterase. They may be classified in several mutually compatible groups, i.e., that can bind simultaneously to the monomeric form of AChE. Most antibodies recognize a peptidic domain that does not exist in mammalian AChE and that may be digested by trypsin without loss of activity or dissociation of quaternary structure. The only exception is the antibody C-131, which is conformation dependent and preferentially recognizes active AChE. We have set up two-site immunoradiometric assays, using an immobilized capture antibody, C-6 or C-131, and a radiolabeled antibody, 125I-C-54. The C-6/C-54 assay quantifies the totality of inactive and active AChE subunits: It detects 10?3 Ellman unit (~40 pg of protein) and yields a linear response up to at least 25 10?3 Ellman units. An analysis of gradient fractions, using C-6/C-54 and C-131/C-54 assays as well as activity determination, shows that the A12 and G4 forms are exclusively composed of active subunits, whereas inactive molecules cosediment with the active G2 and G1 forms. Both active and inactive G2 and G1 forms are amphiphilic, as indicated by the influence of detergents on their sedimentation coefficients and Stokes radii. In brain, the proportion of inactive forms decreases from 40% at embryonic day 11 (E11) to 20% at birth [day 1 (D1)]. In muscle, we observed no inactive AChE at E11 and a small proportion of inactive G1 at D1. The proportion of inactive forms was much higher in cultured myotubes, obtained from E11 myoblasts. These results show that the proportion of inactive AChE depends on the tissue and varies during development. Thus, the cells seem to control actively the acquisition of AChE activity, as well as the formation of the various oligomeric forms.  相似文献   

7.
The IgM monoclonal antibodies, Elec-39, HNK-1 and NC-1, recognize the same subset of Torpedo electric organ acetylcholinesterase (AChE). We show that they react against a glycosphingolipid (SGPG) containing a sulfated glucuronic acid (SGA). The three antibodies appear essentially identical in their specificity but differ in their affinity for the antigens. We have examined their binding in the CNS, nerves and muscles of several vertebrate species, at the optical and in some cases at the electron microscope level. All three antibodies label the same structures: they show diffuse staining around neuromuscular endplates and label the plasma membrane of the Schwann cells, surrounding the outer layer of myelin sheaths. In the adult rat CNS, the antibodies label certain defined structures, notably extracellular material in the habenula and in the CA2 layer of the hippocampus. In the cortex and cerebellum, they label the surface of neural processes and terminals apposed to large multipolar neurons and Purkinje cells, as well as membranous material contained in inclusions dispersed in the cytoplasm of these neurons. These localizations are consistent with the suggestion that the SGA-antigens may be involved in cellular interactions.  相似文献   

8.
Globular forms (G forms) of acetylcholinesterase (AChE) are formed by monomers, dimers and tetramers of the catalytic subunits (G1, G2 and G4). In this work the hydrophobic G2 and G4 AChE forms were purified to homogeneity from Discopyge electric organ and bovine caudate nucleus and studied from different points of view, including: velocity sedimentation, affinity to lectins and SDS-polyacrylamide gel electrophoresis under reducing and non-reducing conditions. The polypeptide composition of Discopyge electric organ G2 is similar to Torpedo, however the pattern of the brain G4 AChE is much complex. Under non-reducing conditions the catalytic subunit possesses a molecular weight of 65 kDa, however this value increases to 68 kDa after reduction, suggesting that intrachain-disulfide bonds are important in the folding of the catalytic subunits of the AChE. Also it was found that after mild proteolysis; the (125I)-TID-20 kDa fragment decreased its molecular weight to approximately 10 kDa with little loss of AChE activity. Finally, we suggest a model for the organization of the different domains of the hydrophobic anchor fragment of the G4 form.  相似文献   

9.
Polyclonal antibodies were raised in rabbits against the C. reinhardtii cell wall lytic enzyme, autolysin, which dissolves the cell wall of gametes prior to cell fusion. The purified immunoglobulins react with both the native and the deglycosylated forms of this gametic autolysin and specifically inhibit enzyme activity. In addition, the immunoglobulins selectively detect the gametic autolysin in immunoblots of crude extracts and do not cross-react with the autolysin of the vegetative cells. The antibodies have been used to study the time of synthesis of the enzyme during gametogenesis and to compare gametic autolysins of different strains of Chlamydomonas.  相似文献   

10.
The asymmetric (20S) acetylcholinesterase (AChE, EC 3.1.1.7) from 1-day-old chick muscle, purified on a column on which was immobilised a monoclonal antibody (mAb) to chick brain AChE, was used to immunise mice. Eight mAbs against the muscle enzyme were hence isolated and characterised. Five antibodies (4A8, 1C1, 10B7, 7G8, and 8H11) recognise a 110-kilodalton (kDa) subunit with AChE catalytic activity, one antibody (7D11) recognises a 72-kDa subunit with pseudocholinesterase or butyrylcholinesterase (BuChE, EC 3.1.1.8) catalytic activity, and two antibodies (6B6 and 7D7) react with the 58-kDa collagenous tail unit. Those three polypeptides can be recognised together in the 20S enzyme used, which is a hybrid AChE/BuChE oligomer. Antibodies 6B6 and 7D7 are specific for asymmetric AChE. Four of the mAbs recognising the 110-kDa subunit were reactive with it in immunoblots. Sucrose density gradient analysis of the antibody-enzyme complexes showed that the anti-110-kDa subunit mAbs cross-link multiple 20S AChE molecules to form large aggregates. In contrast, there is only a 2-3S increase in the sedimentation constant with the mAbs specific for the 72-kDa or for the 58-kDa subunit, suggesting that those subunits are more inaccessible in the structure to intermolecular cross-linking. The 4A8, 10B7, 7D11, and 7D7 mAbs showed cross-reactivity to the corresponding enzyme from quail muscle; however, none of the eight mAbs reacted with either enzyme type from mammalian muscle or from Torpedo electric organ. All eight antibodies showed immunocytochemical localisation of the AChE form at the neuromuscular junctions of chicken twitch muscles.  相似文献   

11.
—Crossed immunoelectrophoretic techniques were developed to study the efficiency of the various purification steps in the isolation of nicotinic acetylcholine receptor (nAChR) from Torpedo mormorata electric organ. A new α-neurotoxin binding assay based on immunoelectrophoresis is also presented. In crude extracts of Torpedo electric organ membranes one type of receptor molecule (M ñ; 300 , 000) was found; an earlier described higher molecular form was shown to be an artifact of affinity chromatography. Polyvalent antibodies against Torpedo electroplaque membranes, antibodies against purified membrane proteins and against Naja naja siamensisα-neurotoxin revealed four α-neurotoxin binding antigens (including nAChR). Two of these, nAChR and T2, were specific for electroplaque membrane and showed partial immunoidentity but different biochemical and physical properties.  相似文献   

12.
Monoclonal antibodies have been prepared against purified neurofilament (NF) subunits (NF68, NF150, and NF200). From 25 fusions, several hundred strongly positive antibodies have been obtained. Among them are antibodies against the specific subunits as well as antibodies recognizing common antigenic determinants. These have all been characterized according to the following properties: ELISA (enzyme-linked immunosorbant assay) testing against each subunit, immunoblots against enriched neurofilament preparation, immunoblots of cyanogen bromide or chymotrypsin-treated neurofilaments, immunofluorescence with PC12 cells, and immunohistochemistry of cerebellum. Whereas the antibodies against the NF68 and NF150 appear to react with single cyanogen bromide fragments, the antibodies against the NF200 react with multiple cyanogen bromide fragments. These data are consistent with the hypothesis that the NF200 is partially composed of several repeated structural determinants. Furthermore, all of the antibodies that react with the NF200 recognize the solubilized "sidearm" domain from limited chymotryptic digestions. The locations of the common and variable domains of the three subunits are discussed in light of these results.  相似文献   

13.
Abstract

Antibodies directed against functional sites on the acetylcholine receptor from Torpedo marmorata have been obtained by the following two procedures: (i) Our library of monoclonal antibodies raised against the whole receptor protein was screened for antibodies competing with cholinergic agonists, antagonists and local anesthetics for receptor binding, (ii) antibodies were raised against short peptides matching the sequence of predetermined sites on the receptor protein. In this way, a topographic map of the functional sites on the receptor surface can be constructed.  相似文献   

14.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

15.
Summary Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.  相似文献   

16.
The immunoglobulin G fraction of a goat antiserum raised against a presumed endoglycosidase-fission product of estradiol receptor from porcine uteri contains some antibodies which precipitate the estradiol/receptor complex and others which release the steroid from the protein. Subcellular receptor forms and receptors from different porcine target organs react in the same fashion as do human, ovine, bovine, guinea pig, rabbit and rat estradiol receptors.  相似文献   

17.
We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.  相似文献   

18.
We report the existence, in Torpedo marmorata tissues, of a cholinesterase species (sensitive to 10(-5) M eserine) that differs from acetylcholinesterase (AChE, EC 3.1.1.7) in several respects: (a) The enzyme hydrolyzes butyrylthiocholine (BuSCh) at about 30% of the rate at which it hydrolyzes acetylthiocholine (AcSCh), whereas Torpedo AChE does not show any activity on BuSCh. (b) It is not inhibited by 10(-5) M BW 284C51, but rapidly inactivated by 10(-8) M diisopropylfluorophosphonate. (c) It does not exhibit inhibition by excess substrate up to 5 X 10(-3) M AcSCh. (d) It does not cross-react with anti-AChE antibodies raised against purified Torpedo AChE. This enzyme is obviously homologous to the "nonspecific" or pseudocholinesterase (pseudo-ChE, EC 3.1.1.8) that exists in other species, although it is closer to "true" AChE than classic pseudo-ChE in several respects. Thus, it shows the highest Vmax with acetyl-, and not propionyl- or butyrylthiocholine, and it is not specifically sensitive to ethopropazine. Pseudo-ChE is apparently absent from the electric organs, but represents the only cholinesterase species in the heart ventricle. Pseudo-ChE and AChE coexist in the spinal cord and in blood plasma, where they contribute to AcSCh hydrolysis in comparable proportions. Pseudo-ChE exists in several molecular forms, including collagen-tailed forms, which can be considered as homologous to those of AChE. In the heart the major component of pseudo-ChE appears to be a soluble monomeric form (G1). This form is inactivated by Triton X-100 within days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Acetylcholinesterases.   总被引:2,自引:0,他引:2  
Acetylcholinesterase (E.C.3.1.1.7) is a widely distributed enzyme, particularly in excitable tissues such as muscle, nerve, and electric organs but also found in erythrocytes and snake venoms. The function of the enzyme at postsynaptic sites in excitable tissues is considered to be termination of synaptic transmission via the hydrolytic inactivation of acetylcholine. The functional role of the enzyme at extrajunctional sites of excitable tissues, in nerve endings and in the erythrocyte has not been established. In the past five or six years substantial progress has been made in terms of our understanding of acetylcholinesterases (AChE) particularly with regard to their molecular characterization, their subunit structure and their immunological properties. These advances have been due in part to successful purification of enzymes from various tissues by the application of affinity chromatography techniques. In addition, some progress has been made regarding physiological aspects of the development and regulation of AChE in excitable tissues. This review will focus on these aspects of AChE by reference to work utilizing the enzyme from the following sources: electric tissue of the eel, Electrophorus electricus, or electric fish, Torpedo, species; mammalian and avian skeletal muscle; neural tissues, particularly mammalian brain; and the mammalian erythrocyte. For more comprehensive reviews of AChE readers are referred to the following references (1, 2).  相似文献   

20.
We report an electrophoretic analysis of the hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. In charge-shift electrophoresis, the rate of electrophoretic migration of globular amphiphilic forms (Ga) is increased at least twofold when the anionic detergent deoxycholate is added to Triton X-100, whereas that of globular nonamphiphilic forms (Gna) is not modified. The G2a forms of the first class, as defined by their aggregation properties, are converted to nonamphiphilic derivatives by phosphatidylinositol phospholipase C (PI-PLC) and human serum phospholipase D (PLD). AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which also exists in very small quantities in detergent-solubilized extracts of electric lobes and spinal cord. They present different electrophoretic mobilities, so that each of these tissues contains a distinct "electromorph," or two in the case of electric organs. The G2a forms of the second class (AChE in plasma, BuChE in heart), as well as G4a forms of AChE and BuChE, are insensitive to PI-PLC and PLD but may be converted to nonamphiphilic derivatives by Pronase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号