首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The changes in FMRFamide (Phe-Met-Arg-Phe-NH2) immunoreactivity in response to incubation in dopamine, serotonin, met-enkephalin, oxytocin, arg-vasopressin and FMRFamide were examined in the central nervous system of the snail, Achatina fulica. 2. When the central nervous system was cultured in medium which contained dopamine and in medium which contained serotonin, the number of immunoreactive neurons increased in the anterior part of the cerebral ganglion and decreased in the sub-esophageal ganglion. 3. When arg-vasopressin was added to the culture medium, the number of immunoreactive neurons increased in the pedal ganglion and decreased in the other sub-esophageal ganglion. 4. By contrast, when the central nervous system was cultured in medium which contained oxytocin, the number of immunoreactive neurons did not increase, but rather decreased, in each ganglion. 5. No changes in immunoreactivity were detected in the central nervous system when it was cultured in medium which contained FMRFamide. 6. It appears, from these results, that the production and release of FMRFamide from different neurons are differentially affected by the physiologically active substances tested.  相似文献   

2.
Summary The distribution of FMRFamide-like immunoreactive (FLI) neurons and their morphological characteristics have been investigated in the central nervous system of the snail, Helix pomatia L. Approximately phageal ganglion complex. More than 50% of the FLI neurons were located in the cerebral ganglia. The FLI neurons could be divided into four groups according to size: (i) giant neurons (over 100 m); (ii) large neurons (80–100 m); (iii) medium-sized neurons (40–70 m); (iv) small neurons (12–30 m). They were distributed i) in groups or clusters, typical of small neurons and ii) in solitary form or in groups comprising 2–3 cells, typical of large and giant neurons. Giant and large neurons revealed only limited arborizations in the neuropil, but rich branching towards and in the peripheral nerves. Some of the small neurons had extensive arborizations of varicose fibers in the neuropil. They may therefore play some role in integratory processes. Varicose FLI fibers were visualized in the cell body layer of the different ganglia, and in the neural sheath of both the ganglia and the peripheral nerves. We propose a multifunctional involvement of FLI neurons and FMRFamide-like neuropeptides in the Helix nervous system: (i) a synaptic or modulatory role in axo-axonic interactions in the neuropil; (ii) a direct influence on neuronal cell bodies in the cortical layer, (iii) innervation of different peripheral organs; and (iv) remote neurohormonal control of peripheral events through the neural sheath.  相似文献   

3.
Gamma-aminobutyric acid (GABA)-like immunoreactive neurons were studied in the central and peripheral nervous system of Helix pomatia by applying immunocytochemistry on whole-mount preparations and serial paraffin sections. GABA-immunoreactive cell bodies were found in the buccal, cerebral and pedal ganglia, but only GABA-immunoreactive fibers were found in the viscero-parietal-pleural ganglion complex. The majority of GABA-immunoreactive cell bodies were located in the pedal ganglia but a few could be found in the buccal ganglia. Varicose GABA-ir fibers could be seen in the neuropil areas and in distinct areas of the cell body layer of the ganglia. The majority of GABA-ir axonal processes run into the connectives and commissures of the ganglia, indicating an important central integrative role of GABA-immunoreactive neurons. GABA may also have a peripheral role, since GABA-immunoreactive fibers could be demonstrated in peripheral nerves and the lips. Glutamate injection did not change the number or distribution of GABA-immunoreactive neurons, but induced GABA immunoreactivity in elements of the connective tissue ensheathing the muscle cells and fibers of the buccal musculature. This shows that GABA may be present in different non-neural tissues as a product of general metabolic pathways.  相似文献   

4.
Late stages of embryogenesis in the terrestrial snail Helix aspersa L. were studied and a developmental timetable was produced. The distribution of gamma-aminobutyric acid-like immunoreactive (GABA-ir) elements in the CNS of the snail was studied from embryos to adulthood in wholemounts. In adults, approximately 226 GABA-ir neurons were located in the buccal, cerebral and pedal ganglia. The population of GABA-ir cells included four pairs of buccal neurons, three neuronal clusters in the pedal ganglia, two clusters and six single neurons in the cerebral ganglia. GABA-ir fibers were observed in all ganglia and in some nerves. The first detected pair of GABA-ir cells in the embryos appeared in the buccal ganglia at about 63–64% of embryonic development. Five pairs of GABA-ir cell bodies were observed in the cerebral ganglia at about 64–65% of development. During the following 30% of development three more pairs of GABA-ir neurons were detected in the buccal ganglia and over fifteen cells were detected in each cerebral ganglion. At the stage of 70% of development, the first pair of GABA-ir neurons was found in the pedal ganglia. In the suboesophageal ganglion complex, GABA-ir fibers were first detected at about 90% of embryonic development. In the posthatching period, the quantity of GABA-ir neurons reached the adult status in four days in the cerebral ganglia, and in three weeks in the pedal ganglia. In juveniles, transient expression of GABA was found in the pedal ganglia (fourth cluster).  相似文献   

5.
We investigated the distribution and projection patterns of central and peripheral glutamate-like immunoreactive (GLU-LIR) neurons in the adult and developing nervous system of Lymnaea. Altogether, 50-60 GLU-LIR neurons are present in the adult central nervous system. GLU-LIR labeling is shown in the interganglionic bundle system and at the varicosities in neuropil of the central ganglia. In the periphery, the foot, lip, and tentacle contain numerous GLU-LIR bipolar sensory neurons. In the juvenile Lymnaea, GLU-LIR elements at the periphery display a pattern of distribution similar to that seen in adults, whereas labeled neurons increase in number in the different ganglia of the central nervous system from juvenile stage P1 up to adulthood. During embryogenesis, GLU-LIR innervation can be detected first at the 50% stage of embryonic development (the E50% stage) in the neuropil of the cerebral and pedal ganglia, followed by the emergence of labeled pedal nerve roots at the E75% stage. Before hatching, at the E90% stage, a few GLU-LIR sensory cells can be found in the caudal foot region. Our findings indicate a wide range of occurrence and a broad role for glutamate in the gastropod nervous system; hence they provide a basis for future studies on glutamatergic events in networks underlying different behaviors.  相似文献   

6.
Summary The distribution of serotonin (5HT)-containing neurons in the central nervous system of the snail Helix pomatia has been determined in whole-mount preparations by use of immunocytochemical and in vivo 5,6-dihydroxy-tryptamine labelling. 5HT-immunoreactive neuronal somata occur in all but the buccal and pleural ganglia. Immunoreactive fibres are present throughout the central nervous system. The 5HT-immunoreactive neuronal somata characteristically appear in groups, located mainly in the cerebral, pedal, visceral and right parietal ganglia. The majority of 5HT-immunoreactive neurons is located in the pedal ganglia. Additionally a dense network of 5HT-immunoreactive varicose fibres is found in the neural sheath of the central nervous system including all the nerves and ganglia. The number and distribution of 5HT-immunoreactive neurons correlates with that demonstrated by 5,6-dihydroxytryptamine labelling method.  相似文献   

7.
8.
Serotonin-like immunoreactivity was mapped in the central nervous system (CNS) of the cockroach, Periplaneta americana. Immunoreactive staining occurred in every ganglion of the CNS. The largest numbers of immunoreactive somata were detected in the optic lobes and the brain, and lowest numbers in the first and second thoracic ganglia. Dense stained fibers, ramifications, and varicosities were found in all ganglia, and numerous axon like processes occurred in all interganglionic connectives. Immunoreactive processes were not, however, detected in most of the peripherally projecting nerve roots. Processes were found only in roots of the suboesophageal ganglion and the tritocerebral lobes of the brain. A comparison of the map for serotonin immunoreactivity with one generated for the pentapeptide transmitter proctolin suggests that the two systems overlap only in the suboesophageal ganglion and the tritocerebrum. The amine and peptide may co-occur in neurons in these regions. The serotonin immunoreactive system appeared significantly different from the octopaminergic system of the ventral nerve cord. Seventy-two potentially identifiable immunoreactive cells were located in the cockroach CNS. Some of these may be suitable for physiological study of the functional role of serotonin.  相似文献   

9.
FMRFamide immunoreactive material (irFMRFamide) was studied in rat brain and gastrointestinal tract. Highest irFMRFamide concentrations were found in tissues of the gastrointestinal tract and, in the brain, highest concentrations were found in the hippocampus, midbrain, brainstem and hypothalamus. High pressure liquid chromatographic characterization of irFMRFamide demonstrated that the immunoreactive material in brain, pancreas and duodenum was different from molluscan FMRFamide but it was also distinct from any known neuropeptide.  相似文献   

10.
By using an antiserum raised against a crustacean #-pigment-dispersing hormone (PDH), the distribution and chemical neuroanatomy of PDH-like immunoreactive neurons was investigated in the central nervous system of the gastropod snails, Helix pomatia and Lymnaea stagnalis. The number of immunoreactive cells in the Helix central nervous system was found to be large (700-900), whereas in Lymnaea, only a limited number (50-60) of neurons showed immunoreactivity. The immunostained neurons in Helix were characterized by rich arborizations in all central ganglia and revealed massive innervation of all peripheral nerves and the neural (connective tissue) sheath around the ganglia and peripheral nerve trunks. A small number of Helix nerve cell bodies in the viscero-parietal ganglion complex were also found to be innervated by PDH-like immunoreactive processes. Hence, a complex central and peripheral regulatory role, including neurohormonal actions, is suggested for a PDH-like substance in Helix, whereas the sites of action may be more limited in Lymnaea.  相似文献   

11.
Lin CH  Tsai MC 《Life sciences》2005,76(14):1641-1666
Effects of procaine on a central neuron (RP1) of the giant African snail (Achatina fulica Ferussac) were studied pharmacologically. The RP1 neuron showed spontaneous firing of action potential. Extra-cellular application of procaine (10 mM) reversibly elicited bursts of potential. The bursts of potential elicited by procaine were not blocked after administration of (1) prazosin, propranolol, atropine, d-tubocurarine, (2) calcium-free solution, (3) ryanodine (4) pretreatment with KT-5720 or chelerythrine. The bursts of potential elicited by procaine were blocked by adding U73122 (10 microM) and the bursts of potential were decreased if physiological sodium ion was replaced with lithium ion or incubated with either neomycin (3.5 mM) or high magnesium solution (30 mM). Preatment with U73122 (10 microM) blocked the initiation of bursts of potential. Ruthenium red (100 microM) or caffeine (10 mM) facilitated the procaine-elicited bursts of potential. It is concluded that procaine reversibly elicits bursts of potential in the central snail neuron. This effect was not directly related to (1) the extra-cellular calcium ion fluxes, (2) the ryanodine sensitive calcium channels in the neuron, or (3) the PKC or PKA related messenger systems. The procaine-elicited bursts of potential were associated with the phospholipase activity and the calcium mobilization in the neuron.  相似文献   

12.
alpha CDCP is a neuropeptide produced by the caudodorsal cells of Lymnaea stagnalis and encoded by the genes of the egg-laying hormone (ELH). The use of a polyclonal antiserum raised against alpha CDCP resulted in the detection of about 800 immunoreactive neurons in the parietal ganglia and a small population (60 cells) in the cerebral ganglia of Helix aspersa. As the genes of ELH are well conserved among the gastropod species, these data designate the parietal ganglia as a putative source for the egg-laying hormone in Helix aspersa.  相似文献   

13.
The distribution and characterization of dopamine-containing neurons are described in the different ganglia of the central nervous system of Helix on the basis of the distribution of tyrosine hydroxylase immunoreactive (TH-ir) and dopamine immunoreactive (DA-ir) neurons. Both TH-ir and DA-ir cell bodies of small diameter (10–25 m) can be observed in the buccal, cerebral and pedal ganglia, dominantly on their ventral surface, and concentrated in small groups close to the origin of the peripheral nerves. The viscero-parietal-pleural ganglion complex is free of immunoreactive cell bodies but contains a dense fiber system. The largest number of TH-ir and DA-ir neurons can be detected in the pedal, and cerebral ganglia. The average number of TH-ir and DA-ir neurons significantly differs but all the identifiable groups of TH-ir neurons also show DA-immunoreactivity. Therefore, we consider the TH-ir neurons in those groups as being DA-containing neurons. The amounts of DA in the different ganglia assayed by high performance liquid chromatography correspond to the distribution and number of TH-ir and DA-ir neurons in the different ganglia. The axon processes of the labeled small-diameter neurons send thin proximal branches toward the cell body layer but only rarely surround cell bodics, whereas distally they give off numerous branches in the neuropil and then leave the ganglion through the peripheral nerves. In the cerebral ganglia, the analysis of the TH-ir pathways indicates that the largest groups of labeled neurons send their processes through the peripheral nerves in a topographic order. These results furnish morphological evidence that DA-containing neurons of Helix pomatia have both central and peripheral roles in neuronal regulation.  相似文献   

14.
Two mouse hybridomas producing monoclonal antibodies Tt9 and Tt 159 directed against antigens of supraesophageal ganglia of the leech T. tessulatum were selected to study the neuroendocrine control of osmoregulation in this species. One, Tt 159 reacted with an antigenic determinant of cells recognized by an anti-angiotensin antibody, the other, Tt 9, with neurons immunoreactive to the anti-vasopressin.  相似文献   

15.
Cholinesterase (ChE) activity was measured in the central nervous system (CNS) and in the digestive gland of the pestiferous land snail Achatinafulica Bowdich, by the method of Huegra et al. (1952). Acetylcholinesterase (AChE), and benzoylcholinesterase (BeChE) activity was higher in the former than in the latter. The complete inhibition of the enzyme activity with 10(-2) M eserine indicates that the ChE examined is AChE. The Km values of the AChE from the digestive gland and the CNS were 3.1 x 10(-5) and 9.0 x 10(-5) (M), respectively. The enzyme is the most active at pH 8.2 and 37 degrees C up to 60 min.  相似文献   

16.
Oxygen-sensing neurons in the central nervous system.   总被引:9,自引:0,他引:9  
This mini-review summarizes the present knowledge regarding central oxygen-chemosensitive sites with special emphasis on their function in regulating changes in cardiovascular and respiratory responses. These oxygen-chemosensitive sites are distributed throughout the brain stem from the thalamus to the medulla and may form an oxygen-chemosensitive network. The ultimate effect on respiratory or sympathetic activity presumably depends on the specific neural projections from each of these brain stem oxygen-sensitive regions as well as on the developmental age of the animal. Little is known regarding the cellular mechanisms involved in the chemotransduction process of the central oxygen sensors. The limited information available suggests some conservation of mechanisms used by other oxygen-sensing systems, e.g., carotid body glomus cells and pulmonary vascular smooth muscle cells. However, major gaps exist in our understanding of the specific ion channels and oxygen sensors required for transducing central hypoxia by these central oxygen-sensitive neurons. Adaptation of these central oxygen-sensitive neurons during chronic or intermittent hypoxia likely contributes to responses in both physiological conditions (ascent to high altitude, hypoxic conditioning) and clinical conditions (heart failure, chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, hypoventilation syndromes). This review underscores the lack of knowledge about central oxygen chemosensors and highlights real opportunities for future research.  相似文献   

17.
18.
19.
Summary Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide 1. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide family. Only one group of perikarya was stained by both antisera; this group was mainly located in the nucleus dorsomedialis hypothalami and extended to the nucleus paraventricularis and nucleus periventricularis hypothalami. The perikarya were found to project fibers to all regions of the hypothalamus, to the septum, nucleus proprius striae terminalis, nucleus paraventricularis thalami, nucleus centralis thalami, nucleus reuniens, medial, central and basal amygdala, area praetectalis, area tegmentalis ventralis of Tsai, substantia grisea centralis mesencephali, formatio reticularis mesencephali, nucleus centralis superior, locus coeruleus, nuclei parabrachiales, nucleus raphe magnus, A 5-region, vagus-solitarius complex, ventral medulla, nucleus spinalis nervi trigemini, and substantia gelatinosa of the spinal cord. In many brain regions FMRFamide-immunoreactive processes were found in close contact with blood vessels.Abbreviations of Amino Acids D aspartic acid - F phenylalanine - G glycine - H histidine - L leucine - M methionine - P proline - R arginine - V valine - W tryptophan - Y tyrosine  相似文献   

20.
Summary In the central nervous system of the pond snail Lymnaea stagnalis a large number of elements (cells and fibers) can be identified with antisera (a-FM) to the molluscan cardioactive tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2). Of these elements some are also reactive to antivasotocin (a-VT) and/or anti-gastrin (a-Gas). These observations suggest that the a-FM positive elements belong to more than one type. Previous results had already indicated that the immunoreactivity of many a-FM positive cells is influenced by the type of fixation. Taking into account the effects of three fixatives on the reactivity of the cells, and their staining characteristics with the two other antisera used, 8 a-FM positive types could be distinguished.Homologous and heterologous adsorptions were carried out to test the specificity of a-FM, a-VT and a-Gas. After homologous adsorptions no staining was obtained. After heterologous adsorptions only part of the multiple staining cells were identified. This indicates that in a-FM, a-VT and a-Gas in addition to (more) selective IgG molecules, less specific IgG molecules occur that can bind to other peptides than those used to raise the antisera (cross-reaction). The (more) selective IgG molecules in a-FM bind to 6 of the a-FM positive types, suggesting that in L. stagnalis a family of FMRFamide-like substances occurs. This conclusion is sustained by results obtained with a-FM adsorbed with fragments of FMRFamide. It appeared that the less selective IgG molecules in a-FM, a-VT and a-Gas cause the multiple stainings of those cells that remain unstained with an antiserum adsorbed with a heterologous antigen. Multiple staining, which can not be abolished by heterologous adsorption, probably is due to the binding of (more) selective IgG molecules to different antigenic determinants present in the cells.The results show that unexpected cross-reactions may occur in immunocytochemical staining procedures. It thus seems precarious to draw conclusions about the chemical structure of a peptide solely on the basis of immunocytochemical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号