首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice dwarf virus (RDV) replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi) induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.  相似文献   

2.
本文综述了目前非循回型植物病素和循回型植物病毒昆虫介体传播机理的研究现状 。  相似文献   

3.
Most plant viruses are transmitted by hemipteroid insects. Some viruses can be transmitted from female parent to offspring usually through eggs, but the mechanism of this transovarial transmission remains unclear. Rice stripe virus (RSV), a Tenuivirus, transmitted mainly by the small brown planthopper (Laodelphax striatellus), is also spread to the offspring through the eggs. Here, we used the RSV–planthopper system as a model to investigate the mechanism of transovarial transmission and demonstrated the central role of vitellogenin (Vg) of L. striatellus in the process of virus transmission into the eggs. Our data showed Vg can bind to pc3 in vivo and in vitro and colocalize in the germarium. RSV filamentous ribonucleoprotein particles (RNPs) only accumulated in the terminal filaments and pedicel areas prior to Vg expression and was not present in the germarium until Vg was expressed, where RSV RNPs and Vg had colocalized. Observations by immunoelectron microscopy (IEM) also indicated that these two proteins colocalized in nurse cells. Knockdown of Vg expression due to RNA interference resulted in inhibition of the invasion of ovarioles by RSV. Together, the data obtained indicated that RSV RNPs may enter the nurse cell of the germarium via endocytosis through binding with Vg. Finally, the virus enters the oocytes through nutritive cords, using the same route as for Vg transport. Our results show that the Vg of L. striatellus played a critical role in transovarial transmission of RSV and shows how viruses can use existing transovarial transportation systems in insect vectors for their own purposes.  相似文献   

4.
During acute viral infections, clearance of the pathogen is followed by the contraction of the anti-viral T cell compartment. In contrast, T cell responses need to be maintained over a longer period of time during chronic viral infections in order to control viral replication and to avoid viral spreading. Much is known about inhibitory signals such as through PD-1 that limit T cell activity during chronic viral infection, but little is known about the stimulatory signals that allow maintenance of anti-viral T cells. Here, we show that the co-stimulatory molecule OX40 (CD134) is critically required in the context of persistent LCMV clone 13 infection. Anti-viral T cells express high levels of OX40 in the presence of their cognate antigen and T cells lacking the OX40 receptor fail to accumulate sufficiently. Moreover, the emergence of T cell dependent germinal center responses and LCMV-specific antibodies are severely impaired. Consequently, OX40-deficient mice fail to control LCMV clone 13 infection over time, highlighting the importance of this signaling pathway during persistent viral infection.  相似文献   

5.
The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.  相似文献   

6.
7.
The central nervous system of wound tumor virus (WTV)-infected Agallia constricta was studied by electron microscopy to obtain information concerning the virus distribution in the nervous system. Wound tumor virions were mostly found in the cytoplasm of the ganglion cells and less frequently in the glial cells. WTV was occasionally observed in the perineurium cells, nerve axons, tracheoblasts, and lateral nerves. In the ganglion cells, virions appeared as individual isolated particles (V(1)), in tubular formation (V(2)), and occasionally in aggregates (V(3)). In the glial cells, the virions were mostly seen in the V(3) formation, and very seldom in the V(1) and V(2) formations. In the perineurium cells and tracheoblasts, only small V(3) formations were observed. The isolated virions were usually surrounded with polyribosomes, and often appeared around the foci of the viroplasm. Sometimes degenerating ganglion cells infected with the WTV were encountered. These damaged cells strongly indicated that WTV exerted a cytopathogenic effect on the nerve cells.  相似文献   

8.
Recombination, complementation and competition profoundly influence virus evolution and epidemiology. Since viruses are intracellular parasites, the basic parameter determining the potential for such interactions is the multiplicity of cellular infection (cellular MOI), i.e. the number of viral genome units that effectively infect a cell. The cellular MOI values that prevail in host organisms have rarely been investigated, and whether they remain constant or change widely during host invasion is totally unknown. Here, we fill this experimental gap by presenting the first detailed analysis of the dynamics of the cellular MOI during colonization of a host plant by a virus. Our results reveal ample variations between different leaf levels during the course of infection, with values starting close to 2 and increasing up to 13 before decreasing to initial levels in the latest infection stages. By revealing wide dynamic changes throughout a single infection, we here illustrate the existence of complex scenarios where the opportunity for recombination, complementation and competition among viral genomes changes greatly at different infection phases and at different locations within a multi-cellular host.  相似文献   

9.
Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors.  相似文献   

10.
By in situ hybridization of bacterium clone and analysis of restriction enzyme digestion, both CMV-cp gene and Bt-toxin gene were inserted one by one into T-DNA of binary plant expression vector pea. The reconstructed plasmid was named pE14. Then, tomato was transformed with pE14 mediated by Agrobacterium tumefaciens GV311-SE, four regenerated tomato plants were obtained on the MS medium containing 100 μg/mL kanamycin. Assay of nopaline, dot blotting of tomato genomic DNA and PCR amplication of CMV-cp gene and Bt-toxin gene from genomic DNA showed that CMV-cp gene and Bt-toxin gene were transferred into the four regenerated tomato plants simultaneously with T-DNA, and no recombination of genes occurred. RNA dot blotting showed that two of them could express simultaneously the CMV-cp gene and Bt-toxin gene proteins. The resistances to virus and insect of the transgenic tomato plants will be tested in their F1 and F2 regenerations.  相似文献   

11.

Background

Dengue virus (DENV) infection can cause severe hemorrhagic disease in humans. Although the pathogenic mechanisms underlying severe DENV disease remain unclear, one of the possible contributing factors is antibody-dependent enhancement (ADE) which occurs when sub-neutralizing antibodies derived from a previous DENV infection enhance viral infection through interaction between virus-antibody complexes and FcR-bearing cells, such as macrophages and basophil/mast cells. Although recent reports showed that DENV induces autophagy, the relationship between antibody-enhanced DENV infection and autophagy is not clear.

Methodology/Principal Findings

We showed that sub-neutralizing antibodies derived from dengue patient sera enhanced DENV infection and autophagy in the KU812 pre-basophil-like cell line as well as the HMC-1 immature mast cell line. Antibody-enhanced DENV infection of KU812 cells increased the number of autophagosome vesicles, LC3 punctation, LC3-II accumulation, and p62 degradation over that seen in cells infected with DENV alone. The percentages of DENV envelope (E) protein-positive cells and LC3 puncta following antibody-enhanced DENV infection of KU812 cells were reduced by the autophagy inhibitor 3-MA. Antibody-enhanced DENV infection of HMC-1 cells showed co-localization of DENV E protein and dsRNA with autophagosomes, which was inhibited by 3-MA treatment. Furthermore, DENV infection and replication were reduced when KU812 cells were transfected with the autophagy-inhibiting Atg4BC74A mutant.

Conclusions/Significance

Our results demonstrate a significant induction of autophagy in antibody-enhanced DENV infection of pre-basophil-like KU812 and immature mast cell-like HMC-1 cells. Also, autophagy plays an important role in DENV infection and replication in these cells. Given the importance of ADE and FcR-bearing cells such as monocytes, macrophages and basophil/mast cells in dengue disease, the results provide insights into dengue pathogenesis and therapeutic means of control.  相似文献   

12.
13.
14.
15.
16.
17.
18.
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.  相似文献   

19.
20.

Background

New viruses pathogenic to plants continue to emerge due to mutation, recombination, or reassortment among genomic segments among individual viruses. Tospoviruses cause significant economic damage to a wide range of crops in many parts of the world. The genetic or molecular basis of the continued emergence of new tospoviruses and new hosts is not well understood though it is generally accepted that reassortment and/or genetic complementation among the three genomic segments of individual viruses could be contributing to this variability since plants infected with more than one tospovirus are not uncommon in nature.

Methodology/Principal Findings

Two distinct and economically important tospoviruses, Iris yellow spot virus (IYSV) and Tomato spotted wilt virus (TSWV), were investigated for inter-virus interactions at the molecular level in dually-infected plants. Datura (Datura stramonium) is a permissive host for TSWV, while it restricts the movement of IYSV to inoculated leaves. In plants infected with both viruses, however, TSWV facilitated the selective movement of the viral gene silencing suppressor (NSs) gene of IYSV to the younger, uninoculated leaves. The small RNA expression profiles of IYSV and TSWV in single- and dually-infected datura plants showed that systemic leaves of dually-infected plants had reduced levels of TSWV N gene-specific small interfering RNAs (siRNAs). No TSWV NSs-specific siRNAs were detected either in the inoculated or systemic leaves of dually-infected datura plants indicating a more efficient suppression of host silencing machinery in the presence of NSs from both viruses as compared to the presence of only TSWV NSs.

Conclusion/Significance

Our study identifies a new role for the viral gene silencing suppressor in potentially modulating the biology and host range of viruses and underscores the importance of virally-coded suppressors of gene silencing in virus infection of plants. This is the first experimental evidence of functional complementation between two distinct tospoviruses in the Bunyaviridae family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号