首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Social living of animals is a broadly occurring phenomenon, although poorly studied in freshwater systems, fish schooling behaviour is an excellent example. The composition of fish schools, species-specific schooling tendencies and preferences of adult fish were studied in the pelagic habitat of the Římov Reservoir, Czech Republic. Video recordings captured over a total of 34 days (16 h per day) in the clear water period of three seasons were analysed. From four species identified as school-forming species – bream, bleak, roach and perch, 40% of the individuals observed formed schools of 3–36 individuals. Although conspecific schools prevailed, 20% of individuals formed heterospecific schools, except bleak that schooled strictly with conspecifics. Schools were composed of individuals of similar body size and life strategy. Heterospecific schools were significantly larger than conspecific schools and showed uneven proportion among species, that is, one species being more abundant when the school dimension increased. Probability of encounter in bleak was lowest and proved highest inclination for schooling. Gregarianism levels depended on species morphology and body size, with larger and morphologically advanced fish tending less to sociability. This indicates that the antipredator function of schooling behaviour is intensified with increasing vulnerability of the species.  相似文献   

2.
Aim To determine whether invasive and locally abundant non‐native species have a more homogenizing effect on plant communities than non‐invasive and less abundant non‐native species. Location California and Florida counties, conservation areas in the USA, and eight US cities. Methods Species lists among counties, conservation areas and cities were compared to see whether invasive and abundant non‐native species increased the Jaccard index of similarity between localities beyond any increases caused by non‐invasive and less abundant non‐native species. Results For all comparisons, we found that invasive non‐native species have a significantly greater homogenizing effect than non‐invasive non‐native species. For the US conservation areas, we found that locally abundant invasive species tend to be more widespread and more widely shared than less abundant invasive species. There is also a positive relationship between homogenization by invasive species and the magnitude of human disturbance. Main conclusions Invasive non‐native species tend to be disproportionately shared among communities relative to non‐invasive non‐native species. This effect is enhanced by human disturbance, as measured by the ratio of non‐native to native species. There is a synergism between abundance and geographical range which enhances the homogenizing effects of abundant species. Invasive species, with wide ecological niches, are more widely shared among communities and more locally abundant. Abundant invasive species are thus more spatially homogenizing, and more ecologically dominant (functionally homogenizing). Also, ‘perceived homogenization’ is probably greater than homogenization measured by the increase in shared species. The abundant species typically seen by the casual observer in a biological community are probably more commonly shared between communities than less common species. Studies that lack abundance data and measure homogenization only on the basis of shared species, which includes most homogenization studies to date, probably underestimate the homogenizing impacts of non‐native species as perceived by people.  相似文献   

3.
The abundances of different species in a parasite community are never similar: there is typically one or a few numerically dominant species and many species with low abundance. Here, we determine whether basic features of parasite communities are associated with strong dominance by one or a few species, among 39 component communities of gastrointestinal helminths in marine fishes from Brazil. First, we tested whether the shape of the species abundance distribution in these communities fits that predicted by several theoretical models, using a goodness-of-fit procedure. Only the canonical lognormal model could be rejected for 5 out of 39 communities; all other comparisons of observed and predicted abundance distributions showed no significant differences, although this may be due to limited statistical power. Second, we used the ratio between the abundance of the most abundant species and either the second or third most abundant species, as indices of dominance; these show, for instance, that the dominant species in a community is typically twice, but sometimes over ten times, as abundant as the next most abundant species. We found that these ratios were not influenced by either the community's species richness, the mean number of individual parasites per host, or the taxonomic identity of the dominant species. However, the abundance ratio between the first and third most abundant species in a community was significantly correlated with an independent index of species interactivity, based on the likelihood that the different parasite species in a component community co-occur in the same host individuals: the difference in abundance between the dominant and third most abundant species was greater in communities characterized by weak interactions. These findings suggest that strong interactions may lead to greater evenness in the abundance of species, and that numerical dominance is more likely to result from interspecific differences in recruitment rates.  相似文献   

4.
A frequent observation in plant–animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken‐and‐egg dilemma: is generalisation a by‐product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant–pollinator and plant–seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni‐directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners.  相似文献   

5.
Predators strongly influence species assemblages and shape morphological defenses of prey. Interestingly, adaptations that constitute effective defenses against one type of predator may render the prey susceptible to other types of predators. Hence, prey may evolve different strategies to escape predation, which may facilitate adaptive radiation of prey organisms. Larvae of different species in the dragonfly genus Leucorrhinia have various morphological defenses. We studied the distribution of these larvae in relation to the presence of predatory fish. In addition, we examined the variation in morphological defenses within species with respect to the occurrence of fish. We found that well-defended species, those with more and longer spines, were more closely associated with habitats inhabited by predatory fish and that species with weakly developed morphological defenses were more abundant in habitats without fish. The species predominantly connected to lakes with or without fish, respectively, were not restricted to a single clade in the phylogeny of the genus. Our data is suggestive of phenotypic plasticity in morphological defense in three of the studied species since these species showed longer spines in lakes with fish. We suggest that adaptive phenotypic plasticity may have broadened the range of habitats accessible to Leucorrhinia. It may have facilitated colonization of new habitats with different types of predators, and ultimately, speciation through adaptive radiation.  相似文献   

6.
There was significant morphological differentiation among samples of Tanganyika sardine Limnothrissa miodon , indicating non-random association of fish. Individuals within schools appeared to be unrelated as high mtDNA haplotype diversity demonstrated the presence of many maternal lineages in each school. Nevertheless, there was evidence from allozyme analysis for genetic differentiation on a very small geographical scale, possibly even among individual schools, without any clear geographical boundaries among populations. Similar microgeographical differentiation at the allozyme level was found in several marine pelagic species, suggesting a general pattern of random genetic structure in pelagic schooling fish. Such genetic patchiness may arise from biased reproductive success in localized spawning events and long-term stability of schools, resulting in genetic differentiation among schools. While the present results are preliminary, the far-reaching implications both for fisheries management and for evolutionary processes in pelagic species warrant further research on microgeographical genetic patterns using more sensitive markers.  相似文献   

7.
Native grasslands are among the most imperiled of the North American ecosystems, with only ∼4% of their pre-settlement area remaining, but some grassland habitats are being restored and maintained through such methods as prescribed burning and mowing, which may provide habitat for animal species endemic to this ecosystem. I determined how succession of the plant community, due to a four-year rotational burn in 16 grassland fragments, influenced species richness and local abundances of small mammals in Illinois, USA. Species richness was relatively low in grasslands that were recently burned and highest in older successional grasslands. The most abundant species, Microtus ochrogaster, M. pennslyvanicus, Peromyscus maniculatus, P. leucopus, and Reithrodontomys megalotis showed very different responses to succession; Microtus spp. were most abundant in older successional grasslands, preferring areas with more cover of bunchgrasses, whereas the other three species were relatively abundant in grasslands of all successional ages. P. maniculatus was most abundant in any habitat that had ample open ground. The grasslands at my study site are a mixture of restored and non-restored grasslands. Overall, adding additional time between burns and restoring more of the grasslands by planting bunchgrasses that are native to this area may increase abundances of most mammal species at my study site.  相似文献   

8.
Abstract.
  • 1 New Zealand was colonized by the German wasp, Vespula germanica (F.), in the 1940s and it subsequently became established throughout the country. The common wasp, V.vulgaris (L), colonized in the late 1970s and is still spreading.
  • 2 The common wasp has replaced the German wasp in some habitats in New Zealand. Samples from a nationwide postal survey indicate that the common wasp is now the more abundant species in honeydew beech forests (Nothofagus spp.), and to a lesser extent in other native forests. The German wasp is still the more abundant wasp in rural areas (excluding forest). The two species are at present co-dominant in urban areas, although this may be a transient phase.
  • 3 In honeydew beech forest the two species show different foraging patterns that provide the potential for local coexistence. Although both species are generalist feeders, the German wasp is more commonly found foraging for protein amongst the forest litter, whereas the common wasp forages more on shrubs and tree saplings. Despite this difference, the common wasp can still replace the German wasp in honeydew beech forest within a few years of invasion.
  • 4 In honeydew beech forests in which the German wasp is the more abundant species it dominates honeydew trunks (sugar resource), whereas the common wasp dominates honeydew trunks in areas where it is the more abundant species. The change from German to common wasp domination of honeydew trunks is more rapid than the change in dominance in other microhabitats. Aggressive interactions may be taking place on this high quality, potentially defensible sugar resource.
  相似文献   

9.
Abstract. 1. Populations of creosote bush ( Larrea tridentata (DC) Coville), were studied in Arizona to determine whether associated gallformers (Cecidomyiidae: Asphondylia spp.) were more abundant on water-stressed or nonstressed plants. Gall densities were measured along a steep elevational gradient that extended from mesic, higher elevations to lower elevations in the desert; and in the Grand Canyon where severely water-stressed and relatively unstressed plants occurred adjacently. At the Grand Canyon site, the responses of creosote bush to water stress were also studied.
2. The number and densities of Asphondylia species increased both at lower elevations and locally on water-stressed plants in the Grand Canyon, indicating that climatic and local conditions influence gallformer abundance in the same way.
3. Five of the eight Asphondylia species studied at the Grand Canyon site were more abundant on stressed plants, two species were more abundant on nonstressed plants and one species showed no preference for either plant type.
4. Densities of most species on stressed plants were positively correlated with the number of meristematic terminals per branch, which were more numerous on stressed plants, due to a bushier architecture. Flower gallformers were more abundant on nonstressed plants, which produced more flowers. Gall densities did not correlate with chemistry measurements, although these parameters also varied with level of stress.
5. These results suggest that gallforming species respond variably to plant stress, even within a closely-related lineage, and that there are effects of stress on plants, including architectural changes, that may be more important to herbivores than biochemical effects emphasized by White (1984) and others.  相似文献   

10.
Little is known about the vegetation found in the karst springs of Wisconsin’s unglaciated region, the Driftless Area. We sampled 26 of these springs, documenting all associated plant species and their status (native, non-native, invasive) and analyzed whether vegetation patterns are related to spring orientation or to spring area. Two-way ANOVA results show that non-native and invasive species, namely Nasturtium officinale (watercress, Brassicaceae), are significantly more abundant than natives in north-facing springs (p < 0.01), but not in south-facing springs. Generally, native species are restricted to, or more abundant in, south-facing springs, and may have a microtopographical preference for these sites, which may receive more direct solar radiation. Nasturtium officinale, the most abundant invasive species, has high cover values in both north and south orientations and is less restricted in its distribution. Correlation analysis shows that the larger the spring, the higher the percent of Nasturtium (p < 0.01) and invasive species cover (as a percent of spring area) (p < 0.005). Larger springs often had slower moving water and this may have contributed to the success of Nasturtium, which may outcompete shade-intolerant natives in the larger springs. Native species cover was negatively related to spring area, though this result was marginally insignificant (p = 0.08).  相似文献   

11.
Evidence concerning mechanisms hypothesized to explain species coexistence in hyper-diverse communities is reviewed for tropical forest plants. Three hypotheses receive strong support. Niche differences are evident from non-random spatial distributions along micro-topographic gradients and from a survivorship-growth tradeoff during regeneration. Host-specific pests reduce recruitment near reproductive adults (the Janzen-Connell effect), and, negative density dependence occurs over larger spatial scales among the more abundant species and may regulate their populations. A fourth hypothesis, that suppressed understory plants rarely come into competition with one another, has not been considered before and has profound implications for species coexistence. These hypotheses are mutually compatible. Infrequent competition among suppressed understory plants, niche differences, and Janzen-Connell effects may facilitate the coexistence of the many rare plant species found in tropical forests while negative density dependence regulates the few most successful and abundant species.  相似文献   

12.
Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.  相似文献   

13.
Benthic divers are dependent on local resources and may therefore adopt different foraging strategies to cope with their energetic requirements in varying situations. We investigated the diet of gentoo penguins (Pygoscelis papua) at Kerguelen Islands, comparing its spatial and temporal variations with the general prey distribution. The study was conducted at four sites over 2 years. In total, 212 stomach contents were collected over the entire breeding season. The diet was composed mainly of neritic fish and crustaceans, with important spatial and seasonal variations. Fish dominated the diet at localities facing the open sea (from 38.0% to 94.6% by mass), whereas crustaceans dominated at the more protected site (84.3% by mass). Fish were more abundant in the winter diet and Euphausia vallentini, the major crustacean species, was more abundant in the summer diet. No inter-year variations were detected. These results are consistent with local prey availability, and highlight the large plasticity of the gentoo penguin diet and foraging behaviour.  相似文献   

14.
Network approaches can increase our understanding of both changes in ecosystems and the role that individual species play in such changes. In ecology, networks have been applied mainly to the study of food webs and mutualistic interactions, with few studies on plant communities. This study used a network approach to examine a semi-arid plant community along a Stipa tenacissima abundance gradient at two locations in SE Spain: (1) an open shrub land where S. tenacissima is a highly competitive species, and (2) an alpha steppe where S. tenacissima forms the end stable successional community. In alpha steppe, the influence of slope was also examined. We detected that S. tenacissima influenced the network structuring process, and that network organization changed along the gradient. In open shrub land, when S. tenacissima became abundant, it dominated the community and other species disappeared. This resulted in a reduction of the number of links that S. tenacissima established. At the alpha-steppe, S. tenacissima coexists with other species, developing more links as it becomes more abundant. On gentle slope zones of alpha steppe, S. tenacissima is more competitive and becomes dominant for high abundance values, reducing its links with other species. The organization of networks varied similarly in both locations. When plant species reduce their abundance and number, links are more heterogeneously distributed in networks. This leads to a concentration of most of the links around a few species, particularly S. tenacissima, which is the most abundant in this case. We conclude that, in order to study plant communities, it is convenient to consider the properties of individual components together with the interaction between them.  相似文献   

15.
The elevational range of the alpine cushion plant Laretia acaulis (Apiaceae) comprises a cold upper extreme and a dry lower extreme. For this species, we predict reduced growth and increased non-structural carbohydrate (NSC) concentrations (i.e. carbon sink limitation) at both elevational extremes. In a facilitative interaction, these cushions harbor other plant species (beneficiaries). Such interactions appear to reduce reproduction in other cushion species, but not in L. acaulis. However, vegetative effects may be more important in this long-lived species and may be stronger under marginal conditions. We studied growth and NSC concentrations in leaves and stems of L. acaulis collected from cushions along its full elevational range in the Andes of Central Chile. NSC concentrations were lowest and cushions were smaller and much less abundant at the highest elevation. At the lowest elevation, NSC concentrations and cushion sizes were similar to those of intermediate elevations but cushions were somewhat less abundant. NSC concentrations and growth did not change with beneficiary cover at any elevation. Lower NSC concentrations at the upper extreme contradict the sink-limitation hypothesis and may indicate that a lack of warmth is not limiting growth at high-elevation. At the lower extreme, carbon gain and growth do not appear more limiting than at intermediate elevations. The lower population density at both extremes suggests that the regeneration niche exerts important limitations to this species’ distribution. The lack of an effect of beneficiaries on reproduction and vegetative performance suggests that the interaction between L. acaulis and its beneficiaries is probably commensalistic.  相似文献   

16.
Lepidopterists have long acknowledged that many uncommon butterfly species can be extremely abundant in suitable locations. If this is generally true, it contradicts the general macroecological pattern of the positive interspecific relationship between abundance and distribution, i.e. locally abundant species are often geographically more widespread than locally rare species. Indeed, a negative abundance–distribution relationship has been documented for butterflies in Finland. Here we show, using the Finnish butterflies as an example, that a positive abundance–distribution relationship results if the geographically restricted species are missed, as may be the case in studies based on random or restricted sampling protocols, or in studies that are conducted over small spatial scales. In our case, the abundance–distribution relationship becomes negative when approximately 70 per cent of the species are included. This observation suggests that the abundance–distribution relationship may in fact not be linear over the entire range of distributions. This intriguing possibility combined with some taxonomic biases in the literature may undermine the generalization that for a given taxonomic assemblage there is a positive interspecific relationship between local abundance and regional distribution.  相似文献   

17.
Bees rely on floral pollen and nectar for food. Therefore, pollinator friendly plantings are often used to enrich habitats in bee conservation efforts. As part of these plantings, non‐native plants may provide valuable floral resources, but their effects on native bee communities have not been assessed in direct comparison with native pollinator friendly plantings. In this study, we performed a common garden experiment by seeding mixes of 20 native and 20 non‐native pollinator friendly plant species at separate neighboring plots at three sites in Maryland, USA, and recorded flower visitors for 2 years. A total of 3,744 bees (120 species) were collected. Bee abundance and species richness were either similar across plant types (midseason and for abundance also late season) or lower at native than at non‐native plots (early season and for richness also late season). The overall bee community composition differed significantly between native and non‐native plots, with 11 and 23 bee species being found exclusively at one plot type or the other, respectively. Additionally, some species were more abundant at native plant plots, while others were more abundant at non‐natives. Native plants hosted more specialized plant–bee visitation networks than non‐native plants. Three species out of the five most abundant bee species were more specialized when foraging on native plants than on non‐native plants. Overall, visitation networks were more specialized in the early season than in late seasons. Our findings suggest that non‐native plants can benefit native pollinators, but may alter foraging patterns, bee community assemblage, and bee–plant network structures.  相似文献   

18.
The ground beetle Pterostichus melanarius (Coleoptera, Carabidae), of European origin, is abundant and wide-spread in the northern United States and southern Canada Three field enclosures were used in a four-year experiment in Alberta, Canada, to examine whether the species is able to establish in natural aspen-poplar forest, and to test the hypothesis that it has an adverse effect on the native carabid assemblage After introduction to the enclosures P melanarius maintained breeding populations in them, establishing that the forest is suitable habitat for the species, and suggesting that the species will eventually invade from nearby populations Pterostichus melanarius had no negative effect on population size or body mass of the native carabid species However, the two most abundant native species (Ptero-stichus adstrictus and P pensvlvanicus) appeared to be more active (measured as escape rate) in compartments where they co-occurred with P melanarius Although the three enclosures were just a few metres apart, one of them consistently yielded the highest densities of all carabid species This difference was correlated with high abundance of earthworms and low litter accumulation Relatively low densities of P melanarius may explain the lack of negative interspecific interactions in forests, although such effects are suggested by data from urban and agricultural environments where P melanarius is more abundant  相似文献   

19.
Lythrum salicaria (purple loosestrife) is a nonindigenous invasive species characterized by prolific growth and abundance in marshy and riparian habitats across North America. Given its invasive success, we hypothesized this species may require less energy and/or use energy more efficiently for biomass construction than co-occurring noninvasive plant species. We measured leaf construction cost (CC), leaf mass per unit area (LMA), and leaf organic nitrogen and carbon content of L. salicaria and the five most abundant co-occurring species, Parthenocissus quinquefolia, Erigeron philadelphicus, Asclepias syriaca, Spiraea latifolia, and Solidago graminifolia, along dammed ponds in the Black Rock Forest, Cornwall, New York, USA. Lythrum salicaria, which was highly abundant (2.52 individuals/m(2)), exhibited significantly lower area-based leaf CC (44.47 ± 4.24 g glucose/m(2) leaf) than relatively less abundant species, suggesting energetics may influence its invasive success. Conversely, least abundant Solidago graminifolia (0.67 individuals/m(2)) exhibited the significantly highest leaf CC per unit leaf area (141.87 ± 39.21 g glucose/m(2) leaf). Overall, a negative correlation between species abundance and area-based leaf CC (r(2) = 0.73) indicated low energy requirements and/or high energy efficiency may influence relative abundance in the plant species studied. As it correlates with species abundance in this study, CC may be a useful tool for evaluating invasive potential.  相似文献   

20.
I try to test the prediction that bird-dispersed plants should produce fruits when fruit-eating birds are most abundant by reviewing some phenological data of fleshy fruit production in western Europe The prediction that fruit ripening dates in populations of the same species should occur later at lower latitudes and elevations, to coincide with the maximum abundance of fruit-eating birds, is not supported by the data The patterns of seasonal variation in the total number and biomass of fruits, but not in the proportion of species in fruit, in communities at different latitudes and elevations do coincide with patterns of seasonal abundances of avian frugivores 1 suggest that this coincidence is due to the greater relative abundance (and contribution to total fruit production) in each locality of species that fruit at times of the year when birds are most abundant These species may have achieved a demographic advantage by getting more seeds dispersed than species that ripen fruits in other seasons  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号