首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All H,H, H,P and several C,P coupling constants, including those between C-4′ and the vicinal phosphorus atom, have been determined for NADP+, NADPH coenzymes and for a 4,4-dimer obtained from one-electron electrochemical reduction of NADP+. From these data the preferred conformation of the ribose, that of the 1,4-dihydronicotinamide rings, and the conformation about bonds C(4′)C(5′) and C(5′)O(5′) were deduced. The preferred form of the 1,4- and 1,6-dihydropyridine rings and the conformation about the ring-ring junction were also obtained for all the other 4,4- and 4,6-dimers formed in the same reduction. All the dimers show a puckered structure, i.e., a boat form for the 1,4- and a twist-boat for the 1,6-dihydronicotinamide ring; both protons at the ring-ring junctions are equatorial and have preferred gauche orientation. On the contrary, the reduced coenzyme NADPH displays a planar or highly flexible conformation, rapidly flipping between two limiting boat structures. The conformation of the ribose rings, already suggested for the NADP coenzymes to be an equilibrium mixture of C(2′)-endo (S-type) and C(3′)-endo (N-type) puckering modes, has been reexamined by using the Altona procedure and the relative proportion of the two modes has been obtained. The S and N families of conformers have almost equal population for the adenine-ribose, whereas for the nicotinamide-ribose rings the S-type reaches the 90%. The rotation about the ester bond C(5′)O(5′) and about C(4′)C(5′), defined by torsion angles β and γ respectively, displays a constant high preference for the trans conformer βt (75–80%), whereas the rotamers γ are spread out in a range of different populations. The values are distributed between the gauche γ+ (48–69%) and the rans γt forms (28–73%). The γ+ conformer reaches a 90% values in the case of NADP+ and NMN+. The conformations of the mononucleotides 5′-AMP, NMN+ and NMNH were also calculated from the experimental coupling constant values of the literature.  相似文献   

2.
Conformations of arabino nucleosides and nucleotides have been analyzed by semiempirical energy calculations. It is found that the change in the configuration of the O(2')-hydroxyl group in arabinoses compared to riboses exerts significant influence on the conformational priorities of the glycosyl and the exocyclic C(4')-C(5') bond torsions. While the anti conformations for the bases are preferred, the anti in equilibrium or formed from syn interconversion is considerably hampered compared to ribosides due to large energy barrier. Further the preferred anti glycosyl torsions are shifted to higher values for C(3')-endo puckers and in ribosides. While the gauche+ conformation around the C(4')-C(5') bond is favored for C(3')-endo arabinosides, it is strongly stabilized for C(2')-endo arabinosides only in the presence of the intrasugar hydrogen bond O(2')-H ... O(5'). The net attractive electrostatic interactions between the phosphate and the base stabilizes the preferred conformations of 5'-arabinonucleotides also.  相似文献   

3.
G I Birnbaum  P Lassota  D Shugar 《Biochemistry》1984,23(21):5048-5053
The three-dimensional structure of 8-chloroguanosine dihydrate was determined by X-ray crystallography. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), and the cell dimensions are a = 4.871 (1) A, b = 12.040 (1) A, and c = 24.506 (1) A. The structure was determined by direct methods, and least-squares refinement, which included all hydrogen atoms, converged at R = 0.031 for 1599 observed reflections. The conformation about the glycosidic bond is syn with chi CN = -131.1 degrees. The ribose ring has a C(2')-endo/C-(1')-exo (2T1) pucker, and the gauche+ conformation of the -CH2OH side chain is stabilized by an intramolecular O-(5')-H...N(3) hydrogen bond. Conformational analysis by means of 1H NMR spectroscopy showed that, in dimethyl sulfoxide, the sugar ring exhibits a marked preference for the C(2')-endo conformation (approximately 70%) and a conformation about the glycosidic bond predominantly syn (approximately 90%), hence similar to that in the solid state. However, the conformation of the exocyclic 5'-CH2OH group exhibits only a moderate preference for the gauche+ rotamer (approximately 40%), presumably due to the inability to form the intramolecular hydrogen bond to N(3) in a polar medium. The conformational features are examined in relation to the behavior of 8-substituted purine nucleosides in several enzymatic systems, with due account taken of the steric bulk and electronegativities of the 8-substituents.  相似文献   

4.
The 3'-5' circular trinucleotide cr(GpGpGp) was studied by means of 1D and 2D high resolution NMR techniques and molecular mechanics calculations. Analysis of the J-couplings, obtained from the 1H and 13C-NMR spectra, allowed the determination of the conformation of the sugar rings and of the 'circular' phosphate backbone. In the course of the investigations it was found that the Karplus-equation most recently parametrized for the CCOP J-coupling constants could not account for the measured J(C4'P) of 11.1 Hz and a new parametrization for both HCOP and CCOP coupling constants is therefore presented. Subsequent analysis of the coupling constants yielded 'fixed' values for the torsion angles beta and delta (with beta = 178 degrees and delta = 139 degrees). The value of the latter angle corresponds to an S-type sugar conformation. The torsion angles gamma and epsilon are involved in a rapid equilibrium in which they are converted between the gauche(+) and trans and between the trans and gauche(-) domain respectively. We show that the occurrence of epsilon in the gauche(-) domain necessitates S-type sugar conformations. Given the aforementioned values for beta, gamma, delta and epsilon the ring closure constraints for the ring, formed by the phosphate backbone can only be fulfilled if alpha and zeta adopt some special values. After energy minimization with the CHARMm force field only two combinations of alpha and zeta result in energetically favourable structures, i.e. the combination alpha (t)/zeta(g-) in case gamma is in a gauche(+) and epsilon is in a trans conformation, and the combination alpha (t)/zeta (g+) for the combination gamma (t)/epsilon (g-). The results are discussed in relation to earlier findings obtained for cd(ApAp) and cr(GpGp), the latter molecule being a regulator of the synthesis of cellulose in Acetobacter xylinum.  相似文献   

5.
A comparative 270 MHz NMR spectroscopic study on the solution structure of the dimer d(TpT) 1, and its two analogues, namely, d(TpST) 2, and NH2d(TcmT) 4 has been reported. Analysis of chemical shifts and coupling constants indicate that: (i) The sugar moieties of the constituent nucleotides are not affected by modification of the internucleotide linkages and adopt preferentially an S-type conformation. (ii) The C4'-C5' bond in the pT part of the modified dimers 2 and 4 shows a large conformational freedom (gamma+ = 32% and 35%, respectively) compared to 1 (gamma+ = 75%). (iii) The population of the trans conformer about C5'-O5' is less important in d(TpST) 2 compared to d(TpT) 1. (iv) The C3'-O3' bond in 2 adopts a trans conformation as in 1. (v) The glycosidic bonds in the modified dimers 2 and 4 showed preferential syn conformation. UV and CD data show that the modified dimers 2 and 4 have poor tendency to stack intramolecularly, they also base pair less efficiently with d(ApA) as compared to d(TpT) 1.  相似文献   

6.
R S Ehrlich  R F Colman 《Biochemistry》1985,24(20):5378-5387
The binding of coenzymes, NADP+ and NADPH, and coenzyme fragments, 2'-phosphoadenosine 5'-(diphosphoribose), adenosine 2',5'-bisphosphate, and 2'-AMP, to pig heart NADP+-dependent isocitrate dehydrogenase has been studied by proton NMR. Transferred nuclear Overhauser enhancement (NOE) between the nicotinamide 1'-ribose proton and the 2-nicotinamide ring proton indicates that the nicotinamide-ribose bond assumes an anti conformation. For all nucleotides, a nuclear Overhauser effect between the adenine 1'-ribose proton and 8-adenine ring proton is observed, suggesting a predominantly syn adenine--ribose bond conformation for the enzyme-bound nucleotides. Transferred NOE between the protons at A2 and N6 is observed for NADPH (but not NADP+), implying proximity between adenine and nicotinamide rings in a folded enzyme-bound form of NADPH. Line-width measurements on the resonances of free nucleotides exchanging with bound species indicate dissociation rates ranging from less than 7 s-1 for NADPH to approximately 1600 s-1 for adenosine 2',5'-bisphosphate. Substrate, magnesium isocitrate, increases the dissociation rate for NADPH about 10-fold but decreases the corresponding rate for phosphoadenosine diphosphoribose and adenosine 2',5'-bisphosphate about 10-fold. These effects are consistent with changes in equilibrium dissociation constants measured under similar conditions. The 1H NMR spectrum of isocitrate dehydrogenase at pH 7.5 has three narrow peaks between delta 7.85 and 7.69 that shift with changes in pH and hence arise from C-4 protons of histidines. One of those, with pK = 5.35, is perturbed by NADP+ and NADPH but not by nucleotide fragments, indicating that this histidine is in the region of the nicotinamide binding site. Observation of nuclear Overhauser effects arising from selective irradiation at delta 7.55 indicates proximity of either a nontitrating histidine or an aromatic residue to the adenine ring of all nucleotides. In addition, selective irradiation of the methyl region of the enzyme spectrum demonstrates that the adenine ring is close to methyl side chains. The substrate magnesium isocitrate produces no observable differences in these protein--nucleotide interactions. The alterations in enzyme--nucleotide conformation that result in changes in affinity in the presence of substrate must involve either small shifts in the positions of amino acid side chains or changes in groups not visible in the proton NMR spectrum.  相似文献   

7.
8.
In the course of investigation of 8-alkylamino substituted adenosines, the title compounds were synthesized as potential partial agonists for adenosine receptors. The structure determination of these compounds was carried out with the X-ray crystallography study. Crystals of 8-(2-hydroxyethylamino)adenosine are monoclinic, space group P 2(1); a = 7.0422(2), b = 11.2635(3), c = 8.9215(2) A, beta = 92.261(1) degrees, V = 707.10(3) A3, Z = 2; R-factor is 0.0339. The nucleoside is characterized by the anti conformation; the ribose ring has the C(2')-endo conformation and gauche-gauche form across C(4')-C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of N-HO type. Crystals of 8-(pyrrolidin-1-yl)adenosine are monoclinic, space group C 2; a = 19.271(1), b = 7.3572(4), c = 11.0465(7) A, beta = 103.254(2), V = 1524.4(2) degrees A3, Z = 4; R-factor is 0.0498. In this compound, there is syn conformation of the nucleoside; the ribose has the C(2')-endo conformation and gauche -gauche form across C(4')- C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of O-HN type. For both compounds, the branching net of intermolecular hydrogen bonds occur in the crystal structures.  相似文献   

9.
The structure of the hydrate of 2'-deoxy-2'-fluoroinosine has been determined by single-crystal x-ray diffraction. The nucleoside crystallizes in space group P2(1)2(1)2(1) with unit cell dimensions, a = 33.291, b = 10. 871, c = 6.897A. There are two nucleosides and two water molecules in the asymmetric unit. The structure was solved by direct methods and refined to a residual R = 0.095. The two independent nucleosides in the asymmetric unit show different conformations about the glycosidic bond, while other structural details are similar. The base orientation to the sugar is syn in molecule A, whereas anti in molecule B. The exocyclic C(4')-C(5') bond conformation defined with respect to C(3')-C(4')-C(5')-O(5') is gauche+ in both molecules A and B. The sugar ring pucker defined by the pseudorotation phase angle P is a twisted conformation in both, C(3')-endo-C(4')-exo with P = 29 degrees in molecule A and C(4')-exo-C(3')-endo with P = 41 degrees in molecule B. It is shown by comparison with x-ray results of other 2'-fluoronucleosides and unmodified nucleosides including inosines that, in addition to a strong preference of the C(3')-endo type pucker, twisted conformations involving C(4')-exo puckering may be one of characteristic features of 2'-fluoronucleosides.  相似文献   

10.
Upon addition of NADP+, the rose bengal-sensitized photoinactivation of D-erythrulose reductase from beef liver is prevented to a remarkable extent. Adenosine 2',5'-diphosphate (2',5'-ADP) also has a protective effect, but to a lesser extent. On the other hand, 2'-AMP markedly enhances the photoinactivation. Other nucleotides which have no 2'-phosphoryl group, such as NAD+, 3'-AMP, 5'-AMP, ADP, and NMN, are ineffective. Further, only 2'-AMP derivatives (NADP+, 2',5'-ADP, and 2'-AMP) among these nucleotides were found to be potent competitive inhibitors of the enzyme with small Ki's (6--13 muM). Photooxidation of some methionine residues in the enzyme is prevented by the addition of NADP+ and accelerated in the presence of 2'-AMP. Photooxidation products(s) of 2'-AMP derivatives have no effect upon the enzymatic activity. Although NADP+ and 2'-AMP induce detectable conformational changes of the enzyme, the changes are not characteristic to the compounds. Based on these observations, we present a possible action mechanism of 2'-AMP derivatives on the photoinactivation of D-erythrulose reductase.  相似文献   

11.
PCILO (Perturbative Configuration Interaction using Localised Orbitals) computations have been carried out for three 6-azapyrimidine nucleosides, 6-azauridine, 6-azacytidine and 6-azathymidine, for both C(2')-endo and C(3')-endo pucker of the sugar ring. The results indicate a syn (chiCN=180 degrees) conformation followed by chiCN=90 degrees and gg conformation for C(3')-endo 6-aza analogs as compareed to the anti (chiCN=0 degrees) and gg conformation preferred by the corresponding pyrimidine nucleosides. For C(2')-endo sugar geometry, 6-azauridine and 6-azacytidine prefer, respectively, chiCN=0 degrees (anti) and phi C(4')-C(5')=60 degrees C (gg) and chiCN-240 degrees (syn) and phi C(4')-C(5')=120 degrees. The corresponding nucleosides, uridine and cytidine, show a preference for syn (chiCN=240 degrees) and gg and anti(chiCN=0 degrees) and gg , respectively. The X-ray crystallographic conformations of 6-azauridine and 6-azacytidine have been attributed to intermolecular hydrogen bonding and crystal packing forces. The results of PMR, CD and ORD studies on 6-azauridine and 6-azacytidine in aqueous solutions are in agreement with the PCILO predictions.  相似文献   

12.
F E Evans  R A Levine 《Biochemistry》1988,27(8):3046-3055
The conformation and dynamics of the dinucleotide d-CpG modified at the C(8) position of the guanine ring by the carcinogen 2-(acetylamino)fluorene has been investigated by high-field 1H NMR spectroscopy. A two-state analysis of chemical shift data has enabled estimation of the extent of intramolecular stacking in aqueous solution as a function of temperature. The stacking, which is mostly fluorene-cytosine, is virtually complete in the low-temperature range. The 500-MHz 1H NMR spectrum consists of two subspectra near ambient temperatures due to a 14.3 +/- 0.3 kcal/mol barrier to internal rotation about the amide bond in the stacked form. A large barrier to internal rotation about the guanyl-nitrogen bond at C(8) has also been ascertained, but separate NMR subspectra were not detected due to the predominance of one of the torsional diastereomers (alpha' = 90 degrees) in the fully stacked state. Problems of self-association and chemical exchange were identified and overcome to enable analysis of the sugar-phosphate backbone conformation utilizing coupling constants. For the exocyclic C(4')-C(5') bond of the deoxyguanosine moiety, there is a high gauche+ (gamma = 60 degrees) conformer population, which is uncommon for a purine nucleotide with a syn orientation about the glycosyl bond. The gauche- conformation (gamma = 300 degrees), which is normally present in syn purine nucleotides in solution, was not detected. The exocyclic C(5')-O(5') torsion of the deoxy-guanosine moiety remains near the classical energy minimum (beta = 180 degrees) in the major stacked conformations. The sugar ring of the deoxycytidine moiety is predominantly in the C2'-endo conformation, while the deoxyguanosine ring is a mixture of conformations, one of which appears to be unusually puckered. The results support intercalation models of modified DNA and suggest a looped-out structure, with the modified guanine being the first base in the loop. Such structures could explain the relatively rapid rate of repair and the frame-shift mutations of this type of adduct.  相似文献   

13.
The structures of poly(dA-dT), poly(dA-dBr5U) and of poly(dA).poly(dT) have been investigated in solution and in fibers, by Raman spectroscopy. Both the alternating poly(dA-dT), poly(dA-dBr5U) and non-alternating poly(dA).poly(dT) exhibit, in the region of sugar phosphate backbone vibrations, two bands of almost equal intensity at about 841 cm-1 and 817 cm-1. The analysis of the characteristic bands of thymine residues that are sensitive to sugar puckers gives indication of a significant displacement from the C(2')-endo conformer suggesting the adoption of alternative conformers such as O(4')-endo. In contrast, the diagnostic Raman bands for the sugar pucker of adenine residues suggest, instead, predominant adoption of C(2')-endo conformations. These Raman results are compatible with rapid dynamic changes of sugar puckers between C(2')-endo and O(4')-endo for the thymidine (and uridine) residues, whereas in adenine residues the sugar puckers fluctuate around the C(2')-endo pucker in all synthetic DNA molecules studied. Molecular dynamics simulations, performed on six different starting models using two distance-dependent dielectric functions epsilon(r) = 4 r and a sigmoidal dependence), all gave similar dynamic behavior in agreement with these Raman data and their interpretation. The mean calculated pseudorotation phases of the adenine residues are systematically higher (around C(2')-endo) than those of the thymine residues (close to O(4')-endo-C(1')-exo). Besides, the mean lifetimes of the thymine residues are 1.5 to 2.0-fold higher in the O(4')-endo than in the C(2')-endo domain, while those of the adenine residues are two to threefold higher in the C(2')-endo than in the O(4')-endo domain. In the Raman spectra of the alternating poly(dA-dBr5U), the splitting of a band into two components arising from the two contributions of ApBr5U and Br5UpA provides strong evidence for a repeating dinucleotide structure in solution. The calculated twist values averaged over the simulation runs are also systematically higher in the 5'T-A3' step (39 degrees) than in the 5'A-T3' step (33 degrees). Simultaneously, the calculated roll values are positive in the 5'T-A3' step (6 degrees) and negative in the 5'A-T3' step (-9 degrees), while the propeller twist values are about the same (-11 degrees to -16 degrees). On the other hand, in the homopolymer, the average twist value is close to 36 degrees with the roll angle close to 0 degrees and large propeller twist values (-20 degrees).  相似文献   

14.
The 2.2-A crystal structure of chicken liver dihydrofolate reductase (EC 1.5.1.3, DHFR) has been solved as a ternary complex with NADP+ and biopterin (a poor substrate). The space group and unit cell are isomorphous with the previously reported structure of chicken liver DHFR complexed with NADPH and phenyltriazine [Volz, K. W., Matthews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., & Kraut, J. (1982) J. Biol. Chem. 257, 2528-2536]. The structure contains an ordered water molecule hydrogen-bonded to both hydroxyls of the biopterin dihydroxypropyl group as well as to O4 and N5 of the biopterin pteridine ring. This water molecule, not observed in previously determined DHFR structures, is positioned to complete a proposed route for proton transfer from the side-chain carboxylate of E30 to N5 of the pteridine ring. Protonation of N5 is believed to occur during the reduction of dihydropteridine substrates. The positions of the NADP+ nicotinamide and biopterin pteridine rings are quite similar to the nicotinamide and pteridine ring positions in the Escherichia coli DHFR.NADP+.folate complex [Bystroff, C., Oatley, S. J., & Kraut, J. (1990) Biochemistry 29, 3263-3277], suggesting that the reduction of biopterin and the reduction of folate occur via similar mechanisms, that the binding geometry of the nicotinamide and pteridine rings is conserved between DHFR species, and that the p-aminobenzoylglutamate moiety of folate is not required for correct positioning of the pteridine ring in ground-state ternary complexes. Instead, binding of the p-aminobenzoylglutamate moiety of folate may induce the side chain of residue 31 (tyrosine or phenylalanine) in vertebrate DHFRs to adopt a conformation in which the opening to the pteridine binding site is too narrow to allow the substrate to diffuse away rapidly. A reverse conformational change of residue 31 is proposed to be required for tetrahydrofolate release.  相似文献   

15.
Rapid reaction studies presented herein show that ferredoxin:NADP+ oxidoreductase (FNR, EC 1.18.1.2) catalyzes electron transfer from spinach ferredoxin (Fd) to NADP+ via a ternary complex, Fd X FNR X NADP+. In the absence of NADP+, reduction of ferredoxin:NADP+ reductase by Fd was much slower than the catalytic rate: 37-80 s-1 versus at least 445 e-s-1; dissociation of oxidized spinach ferredoxin (Fdox) from one-electron reduced ferredoxin:NADP+ reductase (FNRsq) limited the reduction of FNR. This confirms the steady-state kinetic analysis of Masaki et al. (Masaki, R., Yoshikaya, S., and Matsubara, H. (1982) Biochim. Biophys. Acta 700, 101-109). Occupation of the NADP+ binding site of FNR by NADP+ or by 2',5'-ADP (a nonreducible NADP+ analogue) greatly increased the rate of electron transfer from Fd to FNR, releiving inhibition by Fdox. NADP+ (and 2',5'-ADP) probably facilitate the dissociation of Fdox; equilibrium studies have shown that nucleotide binding decreases the association of Fd with FNR (Batie, C. J. (1983) Ph.D. dissertation, Duke University; Batie, C. J., and Kamin, H. (1982) in Flavins and Flavoproteins VII (Massey, V., and Williams, C. H., Jr., eds) pp. 679-683, Elsevier, New York; Batie, C.J., and Kamin, H. (1982) Fed. Proc. 41, 888; and Batie, C.J., and Kamin, H. (1984) J. Biol. Chem. 259, 8832-8839). Premixing Fd with FNR was found to inhibit the reaction of the flavoprotein with NADP+ and with NADPH; thus, substrate binding may be ordered, NADP+ first, then Fd. FNRred and NADP+ very rapidly formed an FNRred X NADP+ complex with flavin to nicotinamide charge transfer bands. The Fdred X NADP+ complex then relaxed to an equilibrium species; the spectrum indicated a predominance of FNRox X NADPH charge-transfer complex. However, charge-transfer species were not observed during turnover; thus, their participation in catalysis of electron transfer from Fd to NADP+ remains uncertain. The catalytic rate of Fd to NADP+ electron transfer, as well as the rates of electron transfer from Fd to FNR, and from FNR to NADP+ were decreased when the reactants were in D2O; diaphorase activity was unaffected by solvent. On the basis of the data presented, a scheme for the catalytic mechanism of catalysis by FNR is presented.  相似文献   

16.
PCILO (perturbative configuration interaction using localized orbitals) computations have been carried out for the conformational properties of 8-azapurine nucleosides. The results indicate an anti conformation for Xcn and a gg conformation for phiC(4')-C(5') for C(2')-endo 8-aza analogs compared to the syn and gg conformation for the corresponding purine nucleosides. For C(3')-endo sugar puckering, both molecules prefer the syn conformation due to intramolecular hydrogen bonding between O(5')-H of the sugar and N(3) of the base, the preference being more profound in 8-aza analogs. The crystallographic conformation 8-azaadenosine has been attributed to crystal forces. The available NMR data on 8-azapurine nucleosides are in agreement with the PCILO predictions.  相似文献   

17.
Adrenodoxin reductase (EC 1.18.1.2) catalyzes the oxidation of NADPH by 1.4-benzoquinone. The catalytic constant of this reaction at pH 7.0 is equal to 25-28 s-1. NADP+ acts as the mixed-type nonlinear inhibitor of enzyme increasing Km of NADPH and decreasing catalytic constant. NADP+ and NADPH act as mutually exclusive inhibitors relative to reduced adrenodoxin reductase. The patterns of 2',5'-ADP inhibition are analogous to that of NADP+. These data support the conclusion about the existence of second nicotinamide coenzyme binding centre in adrenodoxin reductase.  相似文献   

18.
Nuclear magnetic resonance (NMR) and model-building studies were carried out on the hairpin form of the octamer d(CGaCTAGCG) (aC = arabinofuranosylcytosine), referred to as the TA compound. The nonexchangeable protons of the TA compound were assigned by means of nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY). From a detailed analysis of the coupling data and of the NOESY spectra the following conclusions are reached: (i) The hairpin consists of a stem of three Watson-Crick type base pairs, and the two remaining residues, T(4) and dA(5), participate in a loop. (ii) All sugar rings show conformational flexibility although a strong preference for the S-type (C2'-endo) conformer is observed. (iii) The thymine does not stack upon the 3' side of the stem as expected, but swings into the minor groove. (This folding principle of the loop involves an unusual alpha t conformer in residue T(4).) (iv) At the 5'-3' loop-stem junction a stacking discontinuity occurs as a consequence of a sharp turn in that part of the backbone, caused by the unusual beta + and gamma t torsion angles in residue dG(6). (v) The A base slides over the 5' side of the stem to stack upon the aC(3) residue at the 3' side of the stem in an antiparallel fashion. On the basis of J couplings and a set of approximate proton-proton distances from NOE cross peaks, a model for the hairpin was constructed. This model was then refined by using an iterative relaxation matrix approach (IRMA) in combination with restrained molecular dynamics calculations. The resulting final model satisfactorily explains all the distance constraints.  相似文献   

19.
In order to elucidate the substrate specificity of alanyl-tRNA synthetase, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (Ala-SA), an analogue of alanyl-AMP, was chemically synthesized. Its binding ability is similar to that of the substrate based on the inhibitory activity for the aminoacylation of alanyl-tRNA synthetase. Taking advantage of the stable sulfamoyl bond of Ala-Sa, compared with the highly labile aminoacyl bond of alanyl-AMP, the molecular conformation of the former inhibitor was studied by X-ray single crystal analysis. Crystal data are as follows: C13H19N7O7S.2H2O, space group C2, a = 39.620(6), b = 5.757(1), c = 20.040(3) A, beta = 117.2(1) degrees, V = 4065(9) A3, Z = 8, and final R = 0.065 for 2785 independent reflections of F(2)0 greater than or equal to 2 sigma (F0)2. In the crystal, the molecule is in a zwitterionic state with the terminal amino group protonated and sulfamoyl group deprotonated, and takes an open conformation, where the L-alanine moiety is located far from the adenosine moiety with gauche/trans and trans orientations about the exocyclic C(4')-C(5') and C(5')-O(5') bonds, respectively. The conformation of the adenosine moiety is anti for the glycosyl bond and C(3')-endo for the ribose puckering, and alanine is in the usually observed trans region for the psi torsion angle. The molecular dimensions of the sulfamoyl group are nearly the same as those of the phosphate group. The biological significance of the observed Ala-SA conformation is discussed in relation with the molecular conformation of tyrosyl-AMP complexed with tyrosyl-tRNA synthetase.  相似文献   

20.
Carbon-13 NMR spectra of the deoxyribonucleotide d(TpA), 3',5'-cyclic AMP and 3',5'-cyclic dAMP were measured. It is shown that the different substitution of C2' in deoxyribonucleotides versus ribonucleotides does not affect the vicinal C2'-C3'-O3'-P coupling to a measurable extent. Therefore, the same set of Karplus parameters may be used for the C2'-C3-O3'-P couplings in ribonucleotides and in deoxyribonucleotides. Vicinal carbon-phosphorus and proton-phosphorus coupling constants are used to calculate the magnitude of the torsion angle epsilon (C4'-C3'-O3'-P), which amounts to 195(0) in the trans conformer and to 261(0) in the gauche(-) conformer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号