首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast Pyc1 isoform of pyruvate carboxylase has been further characterized and shown to differ from the Pyc2 isoform in its K(a) for K(+) activation. Pyc1 differs from chicken liver pyruvate carboxylase in the lack of effect of acetyl-CoA on ADP phosphorylation by carbamoyl phosphate, which may be a result of differences in the loci of action of the effector between the two enzymes. Solvent D(2)O isotope effects have been measured with Pyc1 on the full pyruvate carboxylation reaction, the ATPase reaction in the absence of pyruvate, and the carbamoyl phosphate-ADP phosphorylation reaction for the first time for pyruvate carboxylase. Proton inventories indicate that the measured isotope effects are due to a single proton transfer step in the reaction. The inverse isotope effects observed in all reactions suggest that the proton transfer step converts the enzyme from an inactive to an active form. Kinetic measurements on the C249A mutant enzyme suggest that C249 is involved in the binding and action of enzyme activators K(+) and acetyl-CoA. C249 is not involved in ATP binding as was observed for the corresponding residue in the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase, nor is it directly responsible for the measured inverse (D)(k(cat)/K(m)) isotope effects. The size of the inverse isotope effects indicates that they may result from formation of a low-barrier hydrogen bond. Modification of the wild type and C249A mutant with o-phthalaldehyde suggests that C249 is involved in isoindole formation but that the modification of this residue is not directly responsible for the accompanying major loss of enzyme activity.  相似文献   

2.
3.
Pyruvate carboxylase in the yeast pyc mutant   总被引:2,自引:0,他引:2  
Pyruvate carboxylase deficiency was previously reported to be the biochemical lesion in a yeast mutant, designated pyc, which cannot utilize ethanol, acetate, pyruvate, aspartate, or oxaloacetate as the sole carbon source [C. Wills and T. Melham (1985) Arch. Biochem. Biophys. 236, 782-791; C. Wills et al. (1986) Arch. Biochem. Biophys. 246, 306-320]. We present evidence here that the level of pyruvate carboxylase activity as well as the native and subunit molecular weights of this enzyme are identical in the mutant and the wild type. In addition we have used immunocytochemical labeling to demonstrate the exclusively cytosolic localization of this enzyme in both the mutant and wild-type yeast.  相似文献   

4.
5.
6.
Sequence and domain structure of yeast pyruvate carboxylase   总被引:16,自引:0,他引:16  
The nucleotide sequence of the yeast pyruvate carboxylase gene has been determined from a cloned fragment of yeast genomic DNA. The deduced translation product codes for a polypeptide of 1178 amino acids, having a calculated molecular weight of 130,100. The protein shows strong sequence homology to specific regions of other biotin carboxylases, lipoamide transferases, and carbamyl phosphate synthetases. The homologous regions suggest the presence of three subsites in the enzyme: a biotin attachment site, a keto acid-binding site, and an ATP-binding site. Partial proteolysis with a variety of proteases under nondenaturing conditions indicates the presence of structural domains corresponding to these subsites.  相似文献   

7.
8.
9.
Isolation of a yeast mutant deficient in pyruvate carboxylase activity   总被引:1,自引:0,他引:1  
To improve our understanding of the catalytic mechanism and regulatory properties of pyruvate carboxylase (EC 6.4.1.1), an important biotin-dependent enzyme, we have sought to isolate mutants in Saccharomyces cerevisiae which are defective in pyruvate carboxylase activity. One mutant was isolated which was unable to grow on glucose minimal medium unless supplemented with aspartate. Although the enzyme had only 25% of the wild type pyruvate carboxylase activity, Western analysis and RNase protection analysis demonstrated that the mutant gene was expressed at approximately 70% of the wild type level. On the basis of genetic crosses and complementation tests, we have attributed the defect to mutations in the PYC gene encoding pyruvate carboxylase.  相似文献   

10.
Pyruvate carboxylase has been detected in, and partially purified from, cell-free extracts of Azotobacter vinelandii OP. The best preparations obtained have specific activities in the range of 4 units/mg and appear approximately 15% pure when analyzed by polyacrylamide gel electrophoresis. The partially purified enzyme is activated by both univalent and divalent cations, contains one or more functional biotinyl residues, and exhibits apparent Michaelis constants for the substrates (pyruvate, Mg-ATP2?, and HCO3?) which are in the same range as those observed for other pyruvate carboxylases. However, A. vinelandii pyruvate carboxylase is fully active in the absence of added acetyl-coenzyme A and is insensitive to inhibition by dicarboxylic acids such as l-aspartate, l-glutamate, and α-ketoglutarate. The molecular weight of the catalytically active species is obtained as 296,000.The level of pyruvate carboxylase is highest in extracts of A. vinelandii grown on pyruvate or l-lactate as sole carbon source and this level is further enhanced on addition of succinate to the medium. The enzyme is absent from cells grown on succinate and is present at intermediate levels in cells grown on sucrose, glucose, glycerol, or acetate. In contrast, the level of phosphoenolypyruvate carboxylase in these extracts is essentially independent of the carbon source. These data suggest that pyruvate carboxylase in A. vinelandii is induced by pyruvate or some closely related metabolite.  相似文献   

11.
12.
13.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

14.
15.
Recently, we demonstrated that a recombinant yeast pyruvate carboxylase expressed in the cytoplasm of BHK-21 cells was shown to partially reconstitute the missing link between glycolysis and TCA, increasing the flux of glucose into the TCA and achieving higher yields of recombinant erythropoietin. In the present study, a CHO cell line producing recombinant human granulocyte macrophage colony stimulating factor was used to evaluate the impact of PYC2 expression and reduced culture temperature. Temperature reduction from 37 to 33 degrees C revealed a reduced growth rate, a prolonged stationary phase and a 2.1-fold increase of the cell specific rhGM-CSF production rate for CHO-K1-hGM-CSF cells. The PYC2-expressing cell clones showed a decreased cell growth and a lower maximum cell concentration compared to the control expressing rhGM-CSF but no PYC2. However, only 65% lactate were produced in PYC2-expressing cells and the product yield was 200% higher compared to the control. The results obtained for CHO cells compared to BHK cells reported previously, indicated that the PYC2 expression dominantly reduced the lactate formation and increased the yield of the recombinant protein to be produced. Finally, the growth and productivity of PYC2-expressing CHO-K1-hGM-CSF cells under both temperature conditions were investigated. The average cell specific rhGM-CSF production increased by 3.2-fold under reduced temperature conditions. The results revealed that the expression of PYC2 and a reduced culture temperature have an additive effect on the cell specific productivity of CHO-K1-hGM-CSF cells.  相似文献   

16.
The cDNA-encoding human pyruvate carboxylase (hPC) has been assembled and cloned into a very high efficiency mammalian expression vector and the construct transfected into 293T kidney cells. Stable clones expressing very high levels of hPC were produced and used as a source of the enzyme. Purification of the recombinant hPC was performed by selective precipitation with 40% ammonium sulfate followed by a single step avidin affinity chromatography, with an overall yield of 20%. Recombinant hPC purified by this method yielded a single band on SDS-PAGE with a specific activity of 20 U/mg. Kinetic analysis demonstrated that the recombinant human PC has the same properties as the native enzyme isolated from liver autopsy. This is the first report of production and purification of recombinant PC.  相似文献   

17.
18.
19.
The maximal velocity of the reaction catalyzed by partially purified pyruvate carboxylase (pyruvate + HCO3 + ATP → oxaloacetate + ADP + Pi, EC 6.4.1.1) from baker's yeast increases with an increase in the adenylate energy charge. This response is modulated by the addition of CoASAc, aspartate, or malate. Variation in energy charge does not change the apparent affinity of the enzyme for either pyruvate or HCO3, but effects on the maximal velocity may participate in regulating the rate of carboxylation of pyruvate.  相似文献   

20.
1. Pyruvate carboxylase from baker's yeast acts with either MgATP(2-) or MnATP(2-) as substrate. The optimum pH for the enzyme reaction is 8.0 with MgATP(2-) and 7.0 with MnATP(2-). 2. When the reaction velocity is plotted against MgATP(2-) (or MnATP(2-)) concentration slightly sigmoid curves are obtained, either in the presence or in the absence of acetyl-CoA (an allosteric activator). In the presence of excess of free Mg(2+) (or Mn(2+)) the curves turn into hyperbolae, whereas in the presence of excess of free ATP(4-) the apparent sigmoidicity of the curves increases. 3. The sigmoidicity of the plots of v against MgATP(2-) (or MnATP(2-)) concentration can be explained by the inhibitory effect of free ATP(4-), the concentration of which, in the experimental conditions employed, is significant and varies according to the total concentration of the ATP-magnesium chloride (or ATP-manganese chloride) mixture. Free ATP(4-) behaves as a negative modifier of yeast pyruvate carboxylase. 4. The effect of high concentrations of Mg(2+) (or Mn(2+)) on the kinetics of yeast pyruvate carboxylase can be explained as a deinhibition with respect to ATP(4-), instead of a direct enzyme activation. 5. At pH6.5 manganese chloride is more effective than magnesium chloride as enzyme activator even in the presence of a great excess (16-fold) of the latter. This is consistent with a significant contribution of the MnATP(2-) complex to the activity of yeast pyruvate carboxylase, in medium conditions resembling those existing inside the yeast cell (pH6.25-6.75; 12mm-magnesium chloride and 0.75mm-manganese chloride). 6. The physiological significance of the enzyme inhibition by free ATP(4-) is doubtful since the Mg(2+) and Mn(2+) concentrations reported to exist inside the yeast cell are sufficient to decrease ATP(4-) concentrations to ineffective values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号