首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
IS10 transposition is regulated by DNA adenine methylation   总被引:64,自引:0,他引:64  
We show that dam- mutants are a major class of E. coli mutants with increased IS10 activity. IS10 has two dam methylation sites, one within the transposase promoter and one within the inner terminus where transposase presumably binds. Absence of methylation results in increased activity of both promoter and terminus, and completely accounts for increased transposition in dam- strains. Transposition of Tn903 and Tn5 are also increased in dam- strains, probably for analogous reasons. Transposition is also increased when IS10 is hemimethylated. One hemimethylated species is much more active than the other and is estimated to be at least 1000 times more active than a fully methylated element. Evidence is presented that the promoter and inner terminus of IS10 are coordinately activated in a dam-dependent fashion, presumably because they are hemimethylated at the same time. Thus, in dam+ strains, IS10 will transpose preferentially when DNA is hemimethylated. We suggest specifically that IS10 transposition may preferentially occur immediately after passage of a chromosomal replication fork.  相似文献   

2.
3.
Temporal control of transposition in Tn5.   总被引:10,自引:6,他引:4       下载免费PDF全文
  相似文献   

4.
5.
M A Davis  R W Simons  N Kleckner 《Cell》1985,43(1):379-387
  相似文献   

6.
Role of the IS50 R proteins in the promotion and control of Tn5 transposition   总被引:19,自引:0,他引:19  
IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.  相似文献   

7.
Tn10 transposition and circle formation in vitro   总被引:45,自引:0,他引:45  
D Morisato  N Kleckner 《Cell》1987,51(1):101-111
We describe a cell-free system that promotes Tn10 transposition and transposon circle formation, a related intramolecular event. Tn10 circle formation in vitro has been characterized in detail, and is shown to require a supercoiled substrate and to proceed in the absence of ATP. The reaction requires Tn10 transposase protein, and either of two E. coli proteins, integration host factor (IHF) and HU, which are small DNA binding proteins that change the conformation of DNA. Tn10 is composed of inverted repeats of insertion sequence IS10. Pair-wise combinations of the IS10 "outside" and "inside" ends mediate distinct classes of rearrangements in vivo, and they exhibit different reaction requirements in vitro. In contrast to the Tn10 reaction, which involves two outside ends, circle formation with two inside ends proceeds with a transposase fraction alone, in the absence of added host factors, and is inhibited by methylation of the dam site within each terminus.  相似文献   

8.
C. T. Kuan  S. K. Liu    I. Tessman 《Genetics》1991,128(1):45-57
Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of the RecA protein was not required. Transposition was accompanied by partial, and occasionally full, restoration of the functional integrity of the gene vacated by the excised Tn5. The stimulation of transposition was inhibited by an uncleavable LexA protein and was strongly enhanced by an additional role of the RecA(Prtc) protein besides its mediation of LexA cleavage. To account for the enhanced transposition, we suggest that (i) there may be a LexA binding site within the promoter for the IS50 transposase, (ii) activated RecA may cleave the IS50 transposition inhibitor, and (iii) the transposase may be formed by RecA cleavage of a precursor molecule.  相似文献   

9.
Integration host factor plays a role in IS50 and Tn5 transposition.   总被引:3,自引:3,他引:0       下载免费PDF全文
In Escherichia coli, the frequencies of IS50 and Tn5 transposition are greater in Dam- cells than in isogenic Dam+ cells. IS50 transposition is increased approximately 1,000-fold and Tn5 transposition frequencies are increased about 5- to 10-fold in the absence of Dam methylation. However, in cells that are deficient for both integration host factor (IHF) and Dam methylase, the transposition frequencies of IS50 and Tn5 approximate those found in wild-type cells. The absence of IHF alone has no effect on either IS50 or Tn5 transposition. These results suggest that IHF is required for the increased transposition frequencies of IS50 and Tn5 that are observed in Dam- cells. It is also shown that the level of expression of IS50-encoded proteins, P1 and P2, required for IS50 and Tn5 transposition and its regulation does not decrease in IHF- or in IHF- Dam- cells. This result suggests that the effects of IHF on IS50 and Tn5 transposition are not at the level of IS50 gene expression. Finally, IHF is demonstrated to significantly retard the electrophoretic mobility of a 289-base-pair segment of IS50 DNA that contains a putative IHF protein-binding site. The physiological role of this IHF binding site remains to be determined.  相似文献   

10.
A study was made of the transposition of the mercury resistance transposon Tn5041 which, together with the closely related toluene degradation transposon Tn4651, forms a separate group in the Tn3 family. Transposition of Tn5041 was host-dependent: the element transposed in its original host Pseudomonas sp. KHP41 but not in P. aeruginosa PAO-R and Escherichia coli K12. Transposition of Tn5041 in these strains proved to be complemented by the transposase gene (tnpA) of Tn4651. The gene region determining the host dependence of Tn5041 transposition was localized with the use of a series of hybrid (Tn5041 x Tn4651) tnpA genes. Its location in the 5'-terminal one-third of the transposase gene is consistent with the data that this region is involved in the formation of the transposition complex in transposons of the Tn3 family. As in other transposons of this family, transposition of Tn5041 occurred via cointegrate formation, suggesting its replicative mechanism. However, neither of the putative resolution proteins encoded by Tn5041 resolved the cointegrates formed during transposition or an artificial cointegrate in E. coli K12. Similar data were obtained with the mercury resistance transposons isolated from environmental Pseudomonas strains and closely related to Tn5041 (Tn5041 subgroup).  相似文献   

11.
dnaA, an essential host gene, and Tn5 transposition.   总被引:14,自引:8,他引:6       下载免费PDF全文
Mutations in dnaA, an essential gene in Escherichia coli, decrease the frequency of transposition of Tn5. An insertion mutation in the dnaA gene does not affect Tn5 gene expression. Therefore, the DnaA protein plays a role either in the transposition reaction itself or in some type of cellular regulation of transposition. Analysis of a mutation in the DnaA box, found at the outside end of IS50, is consistent with a direct interaction of the protein through these bases. IS50 transposition, which utilizes only one end containing a DnaA box, is not affected by dnaA mutations. Overproduction of the DnaA protein does not increase transposition frequencies in wild-type cells, even when the transposase is also overproduced.  相似文献   

12.
13.
The Fis (factor for inversion stimulation) protein of Escherichia coli was found to influence the frequency of transposon Tn5 and insertion sequence IS50 transposition. Fis stimulated both Tn5 and IS50 transposition events and also inhibited IS50 transposition in Dam-bacteria. This influence was not due to regulation by Fis of the expression of the Tn5 transposition proteins. We localized, by DNase I footprinting, one Fis site overlapping the inside end of IS50 and give evidence to strongly suggest that when Fis binds to this site, IS50 transposition is inhibited. The Fis site at the inside end overlaps three Dam GATC sites, and Fis bound efficiently only to the unmethylated substrate. Using a mobility shift assay, we also identified another potential Fis site within IS50. Given the growth phase-dependent expression of Fis and its differential effect on Tn5 versus IS50 transposition in Dam-bacteria, we propose that the high levels of Fis present during exponential growth stimulate transposition events and might bias those events toward Tn5 and away from IS50 transposition.  相似文献   

14.
Copy Number Control of Tn5 Transposition   总被引:12,自引:1,他引:11  
Transposition of Tn5 in Escherichia coli strains containing one or multiple copies of the transposable element was investigated. It was found that the overall frequency of transposition within a cell remained constant regardless of the number of copies of Tn5 present in that cell. Experiments measuring the transposition frequency of differentially marked Tn5s confirmed that the frequency of transposition of an individual Tn5 decreased proportionally with the total number of copies of the element present in a cell. The IS50R -encoded function, protein 2, which has previously been shown to be an inhibitor of transposition, is sufficient to mediate this inhibitory effect. The concentration of protein 2 in a cell appears to modulate the transposition of individual Tn5 elements in such a way that the overall transposition of Tn5 in a cell remains constant.  相似文献   

15.
Pour-El I  Adams C  Minion FC 《Plasmid》2002,47(2):129-137
The Mollicutes are a group of cell-wall-less bacteria and are important plant and animal pathogens. Progress toward analyzing their pathogenic mechanisms has been hampered by the few available genetic tools. Of the two transposons shown to function in mycoplasmas, only Tn4001 is readily amenable to modification and development. One disadvantage of using Tn4001 in mycoplasmas has been independent insertion of the insertion sequence, IS256, probably as a result of inadequate control of the transposase expression in mycoplasmas. In this study, we describe the construction of a mini-Tn4001 containing the tetM antibiotic resistance gene from Tn916. The transposase gene was placed outside the inverted repeats to lower the frequency of independent transposition events. Transposition of mini-Tn4001tet in Mycoplasma gallisepticum occurred at a frequency of 1-8 x 10(-6), a frequency similar to that of the parent transposon. Insertions of mini-Tn4001tet were random and only single insertions were observed. Several unique restriction sites between the inverted repeat sequences provide for further development of mini-Tn4001.  相似文献   

16.
17.
Transposition of Tn5 in Escherichia coli is regulated by two transposon-encoded proteins: transposase (Tnp), promoting transposition preferentially in cis, and the trans-acting inhibitor (Inh). Two separate transposase mutants were isolated that replace glutamate with lysine at position 110 (EK110) and at position 345 (EK345). The EK transposase proteins increase the Tn5 transposition frequency 6- to 16-fold in cis and enhance the ability of transposase to act in trans. The purified mutant transposase proteins interact with transposon outside end DNA differently from the wild-type protein, resulting in the formation of a novel complex in gel retardation assays. During characterization of the transposase proteins in the absence of inhibitor, we found that wild-type transposase itself has a transposition-inhibiting function and that this inhibition is reduced for the mutant proteins. We present a model for the regulation of Tn5 transposition, which proposes the existence of two transposase species, one cis-activating and the other trans-inhibiting. The phenotype of the EK transposase mutants can be explained by a shift in the ratio of these two species.  相似文献   

18.
M P Krebs  W S Reznikoff 《Gene》1988,63(2):277-285
We constructed a derivative of Tn5, Tn5 ORFlac, that is capable of creating lacZ translational fusions upon transposition. Lac- strains carrying this construct formed red papillae when plated on MacConkey-lactose media. Lac+ cells isolated from independent papillae expressed distinct beta-galactosidase fusion proteins, suggesting that the Lac+ phenotype resulted from transposition. In support of this, analysis of plasmids carrying Tn5 ORFlac prepared from these cells indicated that the Lac+ phenotypes arose as a result of intermolecular rearrangements. Furthermore, a derivative of Tn5 ORFlac that contains an ochre mutation in the transposase gene formed papillae only in a supB strain. Tn5 ORFlac is useful for obtaining mutants that affect Tn5 transposition and for creating lacZ fusions. We used the papillation phenotype to isolate a spontaneous revertant of IS50L that promotes transposition at a 3.6-fold higher rate than IS50R. The mutation altered the amino acid sequence of both transposase and inhibitor.  相似文献   

19.
The fosfomycin resistance transposon Tn2921 is flanked by directly repeated sequences homologous to the Tn10-related insertion sequence IS10. The nonrepeated DNA sequences of Tn2921 can be deleted without affecting the transposition ability of the element, showing that at least one of the direct repeats is an active insertion sequence. Transposition of Tn2921 seems to occur through direct transposition, since cointegrates have not been observed. The evolutionary relatedness of Tn2921 and IS10 is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号