首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
H De Reuse  A Roy  A Danchin 《Gene》1985,35(1-2):199-207
The nucleotide sequence of an Escherichia coli DNA segment containing the ptsH gene and the first 162 nucleotides of the ptsI gene encoding, respectively, Hpr and enzyme I of the phosphoenolpyruvate-dependent glycose phosphotransferase system (PTS), was determined. The ptsH promoter was localized using the S1 mapping technique. A nucleotide sequence very similar to the consensus binding site for cAMP receptor protein was found in the -35 region of the ptsH promoter. The ptsH gene is transcribed in the same direction as the ptsI gene and the crr gene (encoding enzyme IIIGlc of the PTS). Analysis of the nucleotide sequence substantiates the notion that the ptsH-ptsI-crr genes constitute a polycistronic operon.  相似文献   

5.
6.
7.
8.
9.
The genes ptsI and ptsH, which encode, respectively, enzyme I and Hpr, cytoplasmic proteins involved in the phosphoenolpyruvate:sugar phosphotransferase system, were cloned from Bacillus subtilis. A plasmid containing a 4.1-kilobase DNA fragment was shown to complement Escherichia coli mutations affecting the ptsH and ptsI genes. In minicells this plasmid expressed two proteins with the molecular weights expected for Hpr and enzyme I. Therefore, ptsH and ptsI are adjacent in B. subtilis, as in E. coli. In E. coli a third gene (crr), involved in glucose translocation and also in catabolite repression, is located downstream from the ptsHI operon. The 4.1-kilobase fragment from B. subtilis was shown to contain a gene that enables an E. coli crr mutant to use glucose. This gene, unlike the E. coli crr gene, was located to the left of ptsH.  相似文献   

10.
11.
12.
Mutational damage of the ptsH gene leads to pleiotropic disturbance of sugar utilization in Escherichia coli K12. A fruS mutation suppresses the defect because of a constitutional expression of the fruB and fruA genes. FruB protein possessing a pseudo-HPr activity replaces the HPr. It was shown that wild type allele fruS+ dominates over the fruS1156 mutation in heterozygous merodiploid. The existence of thermosensitive mutations (fruS4 and fruS12) which repair the ptsH damage was also demonstrated. The fruS mutations were located in the fru operon. Fructose utilization was not disturbed in fruS1156 mutant, but fruS2 and fruS12 mutants were unable to utilize fructose. Spontaneous mutations (fruS6 and fruS13) possessing the same phenotype at any temperature similar to the thermosensitive ones under nonpermissive conditions were isolated. They were mapped using the P1vir transduction. The fruS mutations were found in the structural gene of the fructose operon. Presumably it is the fruA gene that cods for the fructose-specific multidomain protein IIB'Bc of the phosphoenolpyruvate-dependent phosphotransferase system.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号