首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Adhesion and invasion of Intestinal Epithelial Cells (IECs) are critical for the pathogenesis of Salmonella Typhi, the aetiological agent of human typhoid fever. While type three secretion system‐1 (T3SS‐1) is a major invasion apparatus of Salmonella, independent invasion mechanisms were described for non‐typhoidal Salmonellae. Here, we show that T2942, an AIL‐like protein of S. Typhi Ty2 strain, is required for adhesion and invasion of cultured IECs. That invasion was T3SS‐1 independent was proved by ectopic expression of T2942 in the non‐invasive E. coli BL21 and double‐mutant Ty2 (Ty2Δt2942ΔinvG) strains. Laminin and fibronectin were identified as the host‐binding partners of T2942 with higher affinity for laminin. Standalone function of T2942 was confirmed by cell adhesion of the recombinant protein, while the protein or anti‐T2942 antiserum blocked adhesion/invasion of S. Typhi, indicating specificity. A 20‐amino acid extracellular loop was required for invasion, while several loop regions of T2942 contributed to adhesion. Further, T2942 cooperates with laminin‐binding T2544 for adhesion and T3SS‐1 for invasion. Finally, T2942 was required and synergistically worked with T3SS‐1 for pathogenesis of S. Typhi in mice. Considering wide distribution of T2942 among clinical strains, the protein or the 20‐mer peptide may be suitable for vaccine development.  相似文献   

3.
Cytolysin A (ClyA) is a pore-forming hemolytic protein encoded by the clyA gene. It has been identified in Salmonella enterica serovars Typhi and Paratyphi A. To identify and characterize the clyA genes in various Salmonella enterica strains, 21 different serotypes of strains isolated from clinical specimens were presently examined. Full-length clyA genes were found in S. enterica serovar Brandenburg, Indiana, Panama, and Schwarzengrund strains by polymerase chain reaction amplification. The ClyA proteins from these four strains showed >97% amino acid identity to that of S. enterica serovar Typhi. Although all four serovars expressed detectable levels of ClyA as determined by Western blot analysis, they did not show a strong hemolytic effect on blood agar, indicating that ClyA may not be efficiently expressed or secreted. Escherichia coli transformed with clyA genes from the four serovars enhanced production of ClyA proteins and hemolytic activities to a level similar to S. enterica serovar Typhi ClyA. The present results suggest that ClyA may play a role in the pathogenesis of S. enterica serovar Brandenburg, Indiana, Panama and Schwarzengrund.  相似文献   

4.
5.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

6.
Typhoid is a life‐threatening febrile illness that affects ~24.2 million people worldwide and is caused by the intracellular bacteria Salmonella Typhi (S. Typhi). Intestinal epithelial invasion by S. Typhi is essential for the establishment of successful infection and is traditionally believed to depend on Salmonella pathogenicity island 1‐encoded type 3 secretion system 1 (T3SS‐1). We had previously reported that bacterial outer membrane protein T2942/STIV functions as a standalone invasin and contributes to the pathogenesis of S. Typhi by promoting epithelial invasion independent of T3SS‐1 (Cell Microbiol, 2015). Here, we show that STIV, by using its 20‐amino‐acid extracellular loop, interacts with receptor tyrosine kinase, Met, of host intestinal epithelial cells. This interaction leads to Met phosphorylation and activation of a downstream signalling cascade, involving Src, phosphatidylinositol 3‐kinase/Akt, and Rac1, which culminates into localized actin polymerisation and bacterial engulfment by the cell. Inhibition of Met tyrosine kinase activity severely limited intestinal invasion and systemic infection by S. Typhi in vivo, highlighting the importance of this invasion pathway in disease progression. This is the first report elucidating the mechanism of T3SS‐1‐independent epithelial invasion of S. Typhi, and this crucial host–pathogen interaction may be targeted therapeutically to restrict pathogenesis.  相似文献   

7.
Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.  相似文献   

8.
Zhang H  Du H  Ji X  Ni B  Mao L  Xu S  Sheng X  Xu H  Huang X 《Current microbiology》2012,64(3):283-289
Decreased expression (twofold) of a putative yehUTS operon of which yehUT encodes a putative YehU/YehT two-component system in the ompR mutant from Salmonella enterica serovar Typhi (S. Typhi) GIFU10007 under hypotonic growth condition was observed by qRT-PCR. Purified recombinant protein OmpRHis6 of GIFU10007 was shown to bind the upstream region of the yehU gene by the gel-shift assay. In addition, the yehT deletion mutant (ΔyehT) displayed differential expression (twofold or higher) of 26 genes under the condition by the DNA microarray analysis. Altogether, OmpR might regulate the YehUT system in S. Typhi under hypotonic growth condition.  相似文献   

9.
Salmonella enterica serovar Typhi (S. Typhi) is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC) biofilm inoculator (96-well peg lid) and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates) and D-threonine (amino acid) were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among different S. Typhi strains has suggested the possible involvement of various metabolic pathways that might be related to the virulence and pathogenesis of this host-restricted human pathogen. The data serve as a caveat for future in-vivo studies to investigate the carbon metabolic activity to the pathogenesis of S. Typhi.  相似文献   

10.
Although nontyphoidal Salmonella (NTS; including Salmonella Typhimurium) mainly cause gastroenteritis, typhoidal serovars (Salmonella Typhi and Salmonella Paratyphi A) cause typhoid fever, the treatment of which is threatened by increasing drug resistance. Our understanding of S. Typhi infection in human remains poorly understood, likely due to the host restriction of typhoidal strains and the subsequent popularity of the S. Typhimurium mouse typhoid model. However, translating findings with S. Typhimurium across to S. Typhi has some limitations. Notably, S. Typhi has specific virulence factors, including typhoid toxin and Vi antigen, involved in symptom development and immune evasion, respectively. In addition to unique virulence factors, both typhoidal and NTS rely on two pathogenicity‐island encoded type III secretion systems (T3SS), the SPI‐1 and SPI‐2 T3SS, for invasion and intracellular replication. Marked differences have been observed in terms of T3SS regulation in response to bile, oxygen, and fever‐like temperatures. Moreover, approximately half of effectors found in S. Typhimurium are either absent or pseudogenes in S. Typhi, with most of the remaining exhibiting sequence variation. Typhoidal‐specific T3SS effectors have also been described. This review discusses what is known about the pathogenesis of typhoidal Salmonella with emphasis on unique behaviours and key differences when compared with S. Typhimurium.  相似文献   

11.
Wang M  Luo Z  Du H  Xu S  Ni B  Zhang H  Sheng X  Xu H  Huang X 《Current microbiology》2011,63(1):22-31
The type VI secretion system (T6SS) of Salmonella enterica serovar Typhi (S. typhi) is associated with Salmonella pathogenicity island 6 (SPI-6). Though the T6SS gene cluster is intact in S. typhi, the protein complex is believed to be non-functional due to the presence of a pseudogene form of SciI (VipB homolog), a key component. We detected the SciK-his6 in the supernatant of the wild type strain of S. typhi containing the plasmid over-expressing SciK (hcp homolog) with a his6 epitope at the C-terminus, which suggested that the T6SS in S. typhi is functional. We also identified four genes that were essential to T6SS function: sciC (vasA homolog), sciS (vasK homolog), sciG (clpV homolog), and vrgS (vgrG homolog). Further analysis revealed that S. typhi T6SS is cytotoxic to human epithelial cells, but does not influence bacterial growth and mobility. RcsB, PmrA, and Hfq were identified as regulators of S. typhi T6SS gene expression; however, PhoP appears to not be involved. Taken together, the data demonstrate the functionality of S. typhi T6SS and confirm the important role of T6SS for S. typhi’s ability to invade and infect epithelial cells.  相似文献   

12.
Salmonella enterica is a foodborne intracellular pathogen that can invade intestinal epithelial cells and survive in macrophages of susceptible hosts. Although belonging to the same species, individual Salmonella enterica serovars behave as very different pathogens. Indeed, they can cause very different diseases (from mild gastroenteritis to deadly systemic diseases) and have distinctive host selectivity. Salmonella enterica serovars Typhi (S. Typhi) is a unique serovar that has evolved to infect only humans and cause typhoid fever, a life‐threatening systemic disease killing more than 200 000 people every year. The mechanisms that make S. Typhi able to infect only humans are mostly unknown. Recently, an antimicrobial traffic pathway dependent on the Rab GTPase Rab32 and its exchange factor BLOC‐3 was found to be critical to kill S. Typhi in macrophages from non‐susceptible hosts, suggesting that this pathway delivers an antimicrobial factor to the S. Typhi vacuole. Here we discuss this finding in the light of the current knowledge of pathogen killing mechanisms.  相似文献   

13.
伤寒沙门菌基因组DNA芯片的制备与基因表达谱分析应用   总被引:7,自引:0,他引:7  
伤寒沙门菌是一种具有鞭毛的革兰阴性人类肠道致病菌,也是一种重要的原核生物研究用模式菌.基因组芯片能够系统、全面且高效地观察生物的基因表达及进行基因组结构比较.利用伤寒沙门菌现有的全基因组序列,以Ty2菌株的基因组为基准,选取CT18菌株和z66阳性菌株的特异性蛋白编码基因,设计特异性引物,经PCR有效扩增出4 201个基因,产物纯化后点样于多聚赖氨酸玻片制备伤寒沙门菌基因组DNA芯片,并验证了芯片样点位次与效果.通过对基因表达谱分析的各种条件进行优化,建立相应的表达谱分析方法,并用于比较伤寒沙门菌野生株在高渗、低渗条件下的基因表达差异,结果与以前的报道基本一致.结果表明,成功建立了伤寒沙门菌基因组DNA芯片及表达谱分析方法,可为有关伤寒沙门菌基因表达调控及致病性机理、进化和基因多样性等方面的深入研究提供有效的技术支持.  相似文献   

14.

Background

S. Typhi, a human-restricted Salmonella enterica serovar, causes a systemic intracellular infection in humans (typhoid fever). In comparison, S. Typhimurium causes gastroenteritis in humans, but causes a systemic typhoidal illness in mice. The PhoP regulon is a well studied two component (PhoP/Q) coordinately regulated network of genes whose expression is required for intracellular survival of S. enterica.

Methodology/Principal Findings

Using high performance liquid chromatography mass spectrometry (HPLC-MS/MS), we examined the protein expression profiles of three sequenced S. enterica strains: S. Typhimurium LT2, S. Typhi CT18, and S. Typhi Ty2 in PhoP-inducing and non-inducing conditions in vitro and compared these results to profiles of phoP/Q mutants derived from S. Typhimurium LT2 and S. Typhi Ty2. Our analysis identified 53 proteins in S. Typhimurium LT2 and 56 proteins in S. Typhi that were regulated in a PhoP-dependent manner. As expected, many proteins identified in S. Typhi demonstrated concordant differential expression with a homologous protein in S. Typhimurium. However, three proteins (HlyE, STY1499, and CdtB) had no homolog in S. Typhimurium. HlyE is a pore-forming toxin. STY1499 encodes a stably expressed protein of unknown function transcribed in the same operon as HlyE. CdtB is a cytolethal distending toxin associated with DNA damage, cell cycle arrest, and cellular distension. Gene expression studies confirmed up-regulation of mRNA of HlyE, STY1499, and CdtB in S. Typhi in PhoP-inducing conditions.

Conclusions/Significance

This study is the first protein expression study of the PhoP virulence associated regulon using strains of Salmonella mutant in PhoP, has identified three Typhi-unique proteins (CdtB, HlyE and STY1499) that are not present in the genome of the wide host-range Typhimurium, and includes the first protein expression profiling of a live attenuated bacterial vaccine studied in humans (Ty800).  相似文献   

15.
Live attenuated Salmonella enterica serovar Typhi Ty21a (Ty21a) is an important vaccine strain used in clinical studies for typhoid fever and as a vaccine vector for the expression of heterologous antigens. To facilitate the use of Ty21a in such studies, it is desirable to develop improved strategies that enable the stable chromosomal integration and expression of multiple heterologous antigens. The phage λ Red homologous recombination system has previously been used in various gram-negative bacteria species to mediate the accurate replacement of regions of chromosomal DNA with PCR-generated ‘targeting cassettes’ that contain flanking regions of shared homologous DNA sequence. However, the efficiency of λ Red-mediated recombineering in Ty21a is far lower than in Escherichia coli and other Salmonella typhimurium strains. Here, we describe an improved strategy for recombineering-based methods in Ty21a. Our reliable and efficient method involves the use of linear DNA-targeting cassettes that contain relatively long flanking ‘arms’ of sequence (ca. 1,000 bp) homologous to the chromosomal target. This enables multiple gene-targeting procedures to be performed on a single Ty21a chromosome in a straightforward, sequential manner. Using this strategy, we inserted three different influenza antigen expression cassettes as well as a green fluorescent protein gene reporter into four different loci on the Ty21a chromosome, with high efficiency and accuracy. Fluorescent microscopy and Western blotting analysis confirmed that strong inducible expression of all four heterologous genes could be achieved. In summary, we have developed an efficient, robust, and versatile method that may be used to construct recombinant Ty21a antigen-expressing strains.  相似文献   

16.
17.
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (χ9639 and χ9640) were derived from the rpoS mutant strain Ty2 and one (χ9633) from the RpoS+ strain ISP1820. In χ9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS+ vaccines induced a balanced Th1/Th2 immune response while the RpoS strain χ9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS+ strain χ9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, χ9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.  相似文献   

18.
Little is known about the genetic diversity of Salmonella enterica serovar Typhi (S. Typhi) circulating in Latin America. It has been observed that typhoid fever is still endemic in this part of the world; however, a lack of standardized blood culture surveillance across Latin American makes estimating the true disease burden problematic. The Colombian National Health Service established a surveillance system for tracking bacterial pathogens, including S. Typhi, in 2006. Here, we characterized 77 representative Colombian S. Typhi isolates collected between 1997 and 2018 using pulse field gel electrophoresis (PFGE; the accepted genotyping method in Latin America) and whole genome sequencing (WGS). We found that the main S. Typhi clades circulating in Colombia were clades 2.5 and 3.5. Notably, the sequenced S. Typhi isolates from Colombia were closely related in a global phylogeny. Consequently, these data suggest that these are endemic clades circulating in Colombia. We found that AMR in S. Typhi in Colombia was uncommon, with a small subset of organisms exhibiting mutations associated with reduced susceptibility to fluoroquinolones. This is the first time that S. Typhi isolated from Colombia have been characterized by WGS, and after comparing these data with those generated using PFGE, we conclude that PFGE is unsuitable for tracking S. Typhi clones and mapping transmission. The genetic diversity of pathogens such as S. Typhi is limited in Latin America and should be targeted for future surveillance studies incorporating WGS.  相似文献   

19.
20.
The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号