首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
N J Philp  W Chang  K Long 《FEBS letters》1987,225(1-2):127-132
We examined the intracellular distribution of three proteins involved in the cyclic GMP cascade of visual transduction; cGMP phosphodiesterase, the alpha-subunit of G-protein and arrestin. In adult rats, light-induced changes in the amounts of G and arrestin in the photoreceptor cell outer segments were observed both by polyacrylamide gel analysis of purified ROS and by immunocytochemical localization on retinal sections. In dark conditions, G was concentrated in the outer segments of photoreceptor cells while in the light G alpha was seen in the inner segments and the outer nuclear layer. Arrestin had the opposite distribution, appearing in the inner segments and outer nuclear layer under dark conditions and in the ROS under light conditions. In contrast, PDE, the enzyme which is activated by G and inhibited by arrestin showed no light-stimulated movement. In both light- and dark-adapted retinas, PDE was localized primarily in the outer segments of the photoreceptor cells.  相似文献   

2.
The distribution of the components of the cyclic GMP cycle in retina   总被引:3,自引:0,他引:3  
Frozen sections of retinas from rabbit (mostly rods), ground squirrel (mostly cones), and monkey (mixed rods and cones) were freeze dried, and samples from all the discrete layers analyzed for the enzymes which form cyclic GMP and subsequently convert it back to GTP. The distribution of cyclic GMP was also measured in monkey retina, and the retinal layers of both monkey and rabbit were analyzed for GTP, GTP plus GDP, ATP, ATP plus ADP, and UTP plus CTP. The ratio of guanylates to adenylates was found to be about 1:1 in photoreceptor cell layers, but only 1:4 or 5 in deeper layers. In all species, guanylate cyclase (EC 4.6.1.2) and cyclic GMP phosphodiesterase were highest in the outer segment layer. Other layers were lower by factors of 10 to 500. Guanylate kinase (EC 2.7.4.8) was extremely high in all photoreceptor cell layers except the outer segments, but was much lower elsewhere. Nucleoside diphosphokinase (EC 2.7.4.6) paralleled guanylate kinase throughout the photoreceptor cell layers, but did not fall to such low levels in the deeper layers of the retina. Although there were significant differences among the three species, they all displayed the same general enzyme pattern.  相似文献   

3.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

4.
A light-stimulated increase of cyclic GMP in squid photoreceptors   总被引:5,自引:0,他引:5  
H R Saibil 《FEBS letters》1984,168(2):213-216
Photoreceptor outer segments isolated from squid retina are known to contain a light-activated GTP-binding protein. Here it is shown that these photoreceptors contain around 0.01 mol cyclic GMP per mol rhodopsin. Adding GTP in the dark stimulates the production of 0.0003-0.001 mol cyclic GMP/mol rhodopsin per min. GTP and light cause a 2-fold faster increase in cyclic GMP. These results show that either (1) squid rhodopsin activates a guanylate cyclase, or (2) there is a constant guanylate cyclase activity and photoexcited rhodopsin inhibits a cyclic GMP phosphodiesterase.  相似文献   

5.
Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the presence of an additional light-dependent mechanism that is responsible for the acceleration of the light response during light adaptation.  相似文献   

6.
We used an apparatus in which pieces of dark-adapted amphibian retinas (Rana pipiens, Bufo marinus) obtained under infrared illumination were exposed to precise intervals of 500-nm illuminations, and then frozen by contact of their outer segment surface with a liquid helium-cooled copper mirror. Sections of the frozen outer segment layer were obtained in a cryostat and then assayed for total extractable cyclic 3',5'-guanosine monophosphate (cGMP). Significant losses of cGMP with respect to the dark level were evident as early as 60 ms after light onset. With dim subsecond illuminations these losses were surprisingly large, which suggests a previously underestimated magnification in the cGMP cascade, or a transient substantial inhibition of guanylate cyclase activity in combination with increased cyclic GMP phosphodiesterase activity. Within the subsecond period, significant losses that were proportional to light intensity (2-log-unit range) and duration (60-550 ms) were generally not evident. However, losses significantly proportional to these factors became evident with durations of 1 s or longer. When pieces of retina were first illuminated (10 or 60 ms), then held in darkness for increasing periods before freezing, we observed a continuous loss of cGMP during the early postillumination dark period, followed by a recovery of the total cGMP level. The times for recovery to the preillumination level appear to be significantly longer than times reported for the recovery of the photoreceptor membrane potential after similar light exposures.  相似文献   

7.
Light Enhances the Turnover of Phosphatidylinositol in Rat Retinas   总被引:4,自引:1,他引:3  
Light stimulation of isolated rat retinas is shown to enhance the turnover of phosphatidylinositol (PI) as demonstrated by a light-dependent increase in [3H]inositol incorporation and concurrent hydrolysis of existing PI. Studies with rat retinas incubated with [3H]inositol and then microdissected at the level of the outer plexiform layer into photoreceptor cell and inner retina layers indicated that the light-enhanced incorporation of [3H]inositol was associated with the photoreceptor cell layer. The rate of PI hydrolysis in retinas prelabeled in vivo with [3H]inositol was higher in light than in dark incubations and was higher in the photoreceptor cell layer than within the inner retina. Within the photoreceptor cell layer, PI turnover involved 2%/min of the total PI contentin dark and 6–8%/min in light. In contrast to what has been reported for stimulus-enhanced turnover of PI in some tissues, this light-enhanced turnover of PI in the retina was not associated with detectable reductions in PI content. Parallel studies of sodium (22Na) uptake demonstrated that the photoreceptor cells remained functional during these incubations as they retained the capacity to restrict the entry of 22Na in light but not in dark.  相似文献   

8.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

9.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

10.
Abstract— Guanylate cyclase activity of dark-adapted bovine rod outer segments demonstrates a biphasic pattern upon exposure to light. By 10 s of illumination, activity is 20% lower than that observed in dark-adapted outer segments. Activity subsequently increases and then slowly declines to two-thirds of the original activity after 10 min of illumination. In the presence of GTP or ATP, hydrolysis of cyclic GMP is rapidly enhanced by exposure of outer segments to light; the magnitude of this effect is dependent on the amount of substrate present. The rapid effects of light on synthesis and degradation of cyclic GMP indicate that these reactions may be involved in the visual process. The concentration of guanosine 3':5'-cyclic monophosphate (cyclic GMP) is extraordinarily high in dark-adapted bovine rod outer segments and is at least 100-fold that of adenosine 3':5'-cyclic monophosphate (cyclic AMP). No significant decrease in the level of cyclic GMP or cyclic AMP was observed however upon exposure of dark-adapted outer segments to light.  相似文献   

11.
Previous histological, electrophysiological, and biochemical reports have addressed the hypothesis that serotonin functions as a neurotransmitter in mammalian retinas. We have tested the effect on the levels of cyclic AMP of the application of exogenous serotonin, 5-methoxytryptamine, melatonin, and 5-methoxydimethyl-tryptamine to isolated, incubated rabbit retinas. All indoleamines tested significantly elevated intracellular levels of cyclic AMP in both light- and dark-adapted, incubated, intact retinas, provided a phosphodiesterase inhibitor was present. In homogenates of rabbit retina, all indoleamines tested also markedly increased adenylate cyclase activity over basal levels. Maximal activity was observed with 50 microM indoleamine; addition of GTP augmented this increase. The increase in enzyme activity persisted in the presence of known antagonists of dopamine and serotonin 5-HT2-receptors, but was blocked by the mixed 5-HT1, 5-HT2-antagonist lysergic acid diethylamide. The retinal locations of this response have also been identified using layer microdissection techniques on freeze-dried samples obtained from rabbit eyecups suprafused with indoleamine plus phosphodiesterase inhibitor. Cyclic AMP levels were measured in discrete retinal layers of both light- and dark-adapted suprafused eyecups, and increased levels were observed primarily in the inner and outer plexiform layers, which contain the synapses of the retinal neurons.  相似文献   

12.
Frog rod outer segments freshly detached from dark-adapted retinas contain approximately 1-2 molecules of guanosine 3',5'-cyclic monophosphate (cyclic GMP) for every 100 molecules of visual pigment present. This cyclic GMP decays to 5'-GMP, and the conversion is accelerated upon illumination of the outer segments. Bleaching one rhodopsin molecule can lead to the hydrolysis of 1,000-2,000 molecules of cyclic GMP within 100-300 ms. The decline in cyclic GMP concentration becomes larger as illumination increases, and varies with the logarithm of light intensity at levels which bleach between 5 X 10(2) and 5 X 10(5) rhodopsin molecules per outer segment-second. Light suppression of plasma membrane permeability, assayed in vitro as light suppression of outer segment swelling in a modified Ringer's solution, occurs over this same range of light intensity. The correlation between cyclic GMP and permeability or swelling is maintained in the presence of two pharmacological perturbations: papaverine, a phosphodiesterase inhibitor, increases both cyclic GMP levels and the dark permeability of the plasma membrane; and beta,gamma-methylene ATP increases the effectiveness of light in suppressing both permeability and cyclic GMP levels.  相似文献   

13.
Abstract: We have investigated the isozymes of a phosphoinositide-specific phospholipase C (PLC) in bovine retina using several monoclonal antisera to PLCβ1, γ1, and δ1. Immunoblot analysis showed that all three isozymes were present in the retina. Immunocytochemical localization in frozen bovine retina sections showed that PLCγ1 was present in the photoreceptor cell layer, outer plexiform cell layer, inner plexiform cell layer, and ganglion cell layer. Immunoreaction within the photoreceptor cell layer was dependent on dark/light adaptation state of retinas. Immunoblot analysis of rod outer segments (ROS) with monoclonal or polyclonal antibodies to PLCγ1 showed the presence of an immunoreactive band of 140 kDa. ROS prepared from retinas light-adapted in vitro had more PLCγ1 on immunoblots than ROS from dark-adapted retinas. PLC enzyme activity in ROS from light-adapted retinas was 69 and 46% higher than ROS from dark-adapted retinas, when assayed in the presence and absence of ATP, respectively. This increase in enzyme activity was observed at [Ca2+]free between 0.32 and 100 µ M . These results demonstrate the presence of PLCγ1 in bovine ROS and show that ROS prepared from light-adapted retinas are enriched in this isozyme, suggesting that light may promote the binding of this isozyme to bleached ROS membranes.  相似文献   

14.
W W Morgan  C W Kamp 《Life sciences》1983,33(14):1419-1426
Male Sprague-Dawley rats were divided into 2 groups. One group (experimental) was housed for 6 months in continuous low intensity light while the other (control) was exposed to standard 14 hr light: 10 hr dark cyclic lighting conditions for the entire time. For both the control and experimental groups the light intensity was 350-700 Lux. After 6 months, the experimental rats were returned to cyclic lighting. At one week and again at 2 months the light aversion behavior of all rats was tested in a light/dark test box. The experimental rats chose the dark side of the box only 58% of the time while control animals preferred the dark 79% of the time. Since rats normally are nocturnal and avoid light, these results suggest that the experimental rats may have permanently lost a functionally significant portion of the ability to detect light. After the second behavioral test all rats were dark adapted and 15 hr later the effect of short term (30 or 60 min) exposure to light on DA turnover in one retina from each rat was assessed. The other retina from each rat was fixed and examined histologically. Light significantly enhanced the alpha methyl-p-tyrosine induced decline of DA in the retinas of the control rats but exerted no similar effect in the experimental animals. The retinal DA contents of the experimental rats were substantially depleted. Histological examination suggested that the outer nuclear layers of the experimental retinas were more severely damaged than those from rats exposed to continuous light for 4 months but still contained a few pycnotic photoreceptor nuclei and nearly normal looking inner neural layers. These results indicate that extended exposure to light eventually abolishes light aversion behavior and at this time there is also a loss of the photosensitivity of the dopaminergic amacrine neurons.  相似文献   

15.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

16.
R H Lee  B M Brown  R N Lolley 《Biochemistry》1984,23(9):1972-1977
Phosphorylated proteins may play an important role in regulating the metabolism or function of rod photoreceptors. In mammalian retinas, a photoreceptor protein of 33 000 (33K) molecular weight is phosphorylated in a cyclic nucleotide dependent manner in vitro. Since light initiates the activation of a photoreceptor-specific phosphodiesterase and a rapid reduction in guanosine cyclic 3',5'-phosphate concentration, phosphorylation of the 33K protein may be modulated by light in situ. In order to test this possibility, dark-adapted rat retinas were incubated for 30 min in the dark in phosphate-free Kreb's buffer containing [32P]orthophosphate. Following incubation, rod outer segments were detached by shaking, and the 32P-labeled rod outer segment proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and quantitated by densitometric scanning. The incorporation of radioactivity (32P) into the 33K protein was higher than into any other rod outer segment protein, and the amount of 32P-labeled 33K protein in the detached rod outer segments remained unchanged during 10 additional min of darkness. The addition of isobutylmethylxanthine to the incubation medium enhanced the incorporation of 32P into 33K protein to about 400% of the original level. Exposure of freshly detached rod outer segments to room light for 90 s decreased the amount of labeled 33K protein to 45% of its original level. The dephosphorylation of labeled 33K protein continued, reaching 12% of the original dark value 10 min after the previously illuminated sample was returned to darkness. Light initiated the phosphorylation of rhodopsin, and rhodopsin phosphorylation continued during the postillumination period of darkness.  相似文献   

17.
Levels of cyclic AMP and cyclic GMP were measured in light and dark adapted retinas from normal mice (++/++) and from mice heterozygous for the photoreceptor dystrophy gene (rdle/++). In light adapted retinas cyclic GMP levels were 40% lower in the heterozygotes than in the normals, whereas cyclic AMP levels were the same. Dark adaptation elevated cyclic GMP levels 120% in both groups and also elevated cyclic AMP levels 90% in the ++/++ and 45% in the heterozygotes. These data suggest that animals heterozygous for photoreceptor dystrophy have an abnormality of their retinal cyclic GMP system.  相似文献   

18.
Immunocytochemical localization of phosphatidylinositol-4,5-bisphosphate (PIP2) in the rat rod photoreceptor outer segments (OS) was investigated with rabbit antiPIP2 antibodies. The OS of the light-adapted rat eye showed little or no staining, whereas the OS of the dark-adapted eye were intensely stained for PIP2. The immunoreactivity of photoreceptor PIP2 in the eye exposed to a brief flash of light was markedly reduced. However, subsequent dark-adaptation of the flash-bleached eye resulted in a rapid recovery of PIP2 immunoreactivity; dark-adaptation for 5 min was sufficient for recovery to the fully dark-adapted level. In dark-adapted eyes exposed to graded light intensities, the PIP2 immunostaining varied with light levels and was correlated with unbleached rhodopsin concentrations. These results suggest that PIP2 in the rat photoreceptor cells is rapidly hydrolyzed upon light exposure and rapidly synthesized in the dark and that the decrease of PIP2 level is triggered by photic bleaching of rhodopsin.  相似文献   

19.
Light-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate (TPI) to 1,2-diacylglycerol and D-myo-inositol 1,4,5-triphosphate (IP3) has been reported in the visual photoreceptor cells. We have investigated the localization of the TPI antigenic sites in dark- and light-adapted rat retinas using rabbit anti TPI antibodies (Ab). Sprague-Dawley rats were dark-, or light-adapted, or were exposed to a light flash. The eyes were fixed immediately and the tissue sections stained with the rabbit anti TPI Ab. The peroxidase-antiperoxidase method was used to find the localization of the TPI antigenic site. Image analysis of the sections was performed to obtain optical density profiles of the stain. Dark-adapted retinas showed intense staining of the rod outer segment (OS) layer but much less staining of the rod inner segment layer. Compared with the OS of dark-adapted retinas, those of the flash-bleached retinas were stained much less. The OS of fully bleached retinas showed little or no staining. The anti TPI Ab-protein A-gold conjugate intensely stained disks from dark-adapted retina but those from bleached retina much less. Our results suggest that rapid hydrolysis of TPI in rat rod outer segments occurs in vivo in response to light.  相似文献   

20.
Rho-1C5, a monoclonal antibody sensitive to phosphorylation of rhodopsin, bound to the retinal photoreceptor cell body region of dark-adapted but not light-adapted 8 to 13-day-old-rats. There was no cell body labeling visible either before or after this time, although the photoreceptor outer segments were labeled at all times from postnatal day 5 (PN5) onwards, in both light and dark adapted retinas. However, opsin was detectable in the photoreceptor cell body region from birth onwards using another rhodopsin antibody binding to a site unaffected by phosphorylation. Competitive inhibition radioimmunoassays also indicated light-dependent differences in Rho-1C5 binding at PN8 and adult. Biochemical studies showed light-dependent phosphorylation of rhodopsin at PN8, PN13 (just after eye opening) and adult. These data indicate that rhodopsin can be phosphorylated in a light-regulated manner early in development before eye opening and imply that photoactive chromophores can attach to opsin in the cell body as well as the outer segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号