首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly-β-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of β-hydroxybutyrate, butyrate, acetone, isopropanol, 2,3-butanediol and succinate were observed. Subsequent anaerobic PHB breakdown showed enhanced levels of these products at the expense of PHB. Fermentative metabolism occurring during anaerobic PHB degradation was confirmed in experiments with fully 13C-enriched cells, which were grown on 13C-labelled methane. β-hydroxybutyrate, butyrate, acetate, acetone, isopropanol, 2,3-butanediol and succinate were detected as multiple 13C-labelled compounds in the culture medium. Our results suggest that intracellular PHB degradation can be used as a reserve energy source by methanotrophs under anoxic conditions. Journal of Industrial Microbiology & Biotechnology (2001) 26, 15–21.  相似文献   

2.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-β-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

3.
Phosphorus and carbon metabolism in Microlunatus phosphovorus was investigated by using a batch reactor to study the kinetics of uptake and release of extracellular compounds, in combination with 31P and 13C nuclear magnetic resonance (NMR) to characterize intracellular pools and to trace the fate of carbon substrates through the anaerobic and aerobic cycles. The organism was subjected to repetitive anaerobic and aerobic cycles to induce phosphorus release and uptake in a sequencial batch reactor; an ultrafiltration membrane module was required since cell suspensions did not sediment. M. phosphovorus fermented glucose to acetate via an Embden-Meyerhof pathway but was unable to grow under anaerobic conditions. A remarkable time shift was observed between the uptake of glucose and excretion of acetate, resulting in an intracellular accumulation of acetate. The acetate produced was oxidized in the subsequent aerobic stage. Very high phosphorus release and uptake rates were measured, 3.34 mmol g of cell−1 h−1 and 1.56 mmol g of cell−1 h−1, respectively, values only comparable with those determined in activated sludge. In the aerobic period, growth was strictly dependent on the availability of external phosphate. Natural abundance 13C NMR showed the presence of reserves of glutamate and trehalose in cell suspensions. Unexpectedly, [1-13C]glucose was not significantly channeled to the synthesis of internal reserves in the anaerobic phase, and acetate was not during the aerobic stage, although the glutamate pool became labeled via the exchange with intermediates of the tricarboxylic acid cycle at the level of glutamate dehydrogenase. The intracellular pool of glutamate increased under anaerobic conditions and decreased during the aerobic period. The contribution of M. phosphovorus for phosphorus removal in wastewater treatment plants is discussed on the basis of the metabolic features disclosed by this study.  相似文献   

4.
AIMS: The study investigated the physiology of Amaricoccus kaplicensis to determine whether it could outcompete polyphosphate accumulating bacteria in activated sludge systems removing phosphorus, by preferentially assimilating substrates in the anaerobic stages of these processes. METHODS AND RESULTS: The storage processes were investigated under anaerobic, anoxic and aerobic conditions in both batch and periodically fed cultures in an aerobic sequencing batch reactor (SBR). Amaricoccus kaplicensis showed a high capacity for storing aerobically large amounts of acetate as poly beta-hydroxybutyrate (PHB) at high rates. However, no acetate assimilation under anaerobic conditions and very slow assimilation under anoxic conditions could be detected. CONCLUSION: Amaricoccus kaplicensis in pure culture does not behave as polyphosphate accumulating bacteria competitor; therefore it is difficult to understand why anaerobic/aerobic systems often contain such large numbers of Amaricoccus cells. SIGNIFICANCE AND IMPACT OF THE STUDY: Amaricoccus kaplicensis is probably not responsible for the failure of activated sludge systems removing phosphorus, and other organisms capable of anaerobic substrate assimilation should be sought.  相似文献   

5.
The characteristics of PHB production from carbon dioxide by autotrophic culture of Alcaligenes eutrophus ATCC 17697T using a recycled gas closed circuit culture system under the condition of oxygen limitation were investigated. Cell concentration increased to more than 60 g/l after 60 h of cultivation, while the PHB concentration reached 36 g/l. PHB accumulation in the oxygen-limited culture was superior than that in an ammonium-deficient culture. The PHB produced was identified as a homopolymer of d-3-hydroxybutyrate by 1H and 13C NMR analysis. The stoichiometry for PHB production from CO2 under the oxygen limitation condition was indicated to be as follows: 33H2 + 12O2 + 4CO2 → C4H6O2 + 30H2O. This stoichiometry shows that the hydrogen consumption per one mole of CO2 for PHB production is larger than that for cell formation.  相似文献   

6.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Polyphosphate accumulation by Paracoccus denitrificans was examined under aerobic, anoxic, and anaerobic conditions. Polyphosphate synthesis by this denitrifier took place with either oxygen or nitrate as the electron acceptor and in the presence of an external carbon source. Cells were capable of poly-beta-hydroxybutyrate (PHB) synthesis, but no polyphosphate was produced when PHB-rich cells were incubated under anoxic conditions in the absence of an external carbon source. By comparison of these findings to those with polyphosphate-accumulating organisms thought to be responsible for phosphate removal in activated sludge systems, it is concluded that P. denitrificans is capable of combined phosphate and nitrate removal without the need for alternating anaerobic/aerobic or anaerobic/anoxic switches. Studies on additional denitrifying isolates from a denitrifying fluidized bed reactor suggested that polyphosphate accumulation is widespread among denitrifiers.  相似文献   

8.
In this study, polyhydroxybutyrate (PHB) – a biodegradable plastics material – was produced by activated sludge performing enhanced biological phosphorus removal (EBPR) in batch experiments under anaerobic, aerobic and anaerobic/aerobic conditions. Under anaerobic conditions, the maximum PHB content of the dry biomass was 28.8% by weight, while under aerobic or anaerobic/aerobic conditions, the maximum PHB content was about 50%. The PHB production rate with respect to the volatile suspended solids (VSS) was: (i) 70 mg/(g VSS) h under aerobic conditions that followed anaerobic conditions, (ii) 156 mg/(g VSS) h under anaerobic condition, and (iii) 200 mg/(g VSS) h under aerobic conditions with energy also supplied from polyphosphate. A side stream, with initially anaerobic conditions for PHB accumulation and phosphorus release, and then aerobic conditions for PHB accumulation, was proposed. In this side stream, biomass with a high PHB content and a high PHB production rate could be both achieved.  相似文献   

9.
13C-nuclear magnetic resonance was used to study the metabolism of [2-13C]acetate in suspensions of Rhodopseudomonas sphaeroides. In the dark, in logarithmic-phase cells the 13C label appeared first in butyrate C-2 and C-4 and subsequently in glutamate C-4 and succinate C-2 and C-3. In the light, synthesis of poly(β-hydroxybutyrate) (PHB) takes place. Butyrate synthesis seems to be independent of PHB synthesis or degradation activity. Starved, logarithmic-phase cells also show massive synthesis of PHB in the dark. Stationary-phase cells incorporate 13C predominantly into glutamate and succinate. No significant butyrate biosynthesis can be detected in the dark or during illumination. The incorporation of label in PHB is very slow in these cells and most probably originates from exchange of 12C for 13C into PHB. This might indicate slow turnover without net synthesis of the polymer occurring under these conditions. The results are discussed in relation to the redox state and the availability of metabolic energy for biosynthetic reactions in the dark and during illumination of cell suspensions of Rps. sphaeroides.  相似文献   

10.
In this study, we used the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12 to investigate the enhanced biologic phosphorus-removal (EBPR) mechanism involved with polyhydroxybutyrate (PHB), glycogen, and phosphorus uptake in the presence of acetate under anoxic or aerobic conditions. The results showed that excess acetate concentration and aerobic cultivation can enhance PHB formation efficiency and that PHB formation might be stimulated by glycogenolysis of the cellular glycogen. The efficiency of the uptake of anoxic phosphorus was greater when PHB production was lower. The EBPR mechanism of Brachymonas sp. strain P12 for PHB, phosphorus, and glycogen was similar to the conventional anaerobic-aerobic (or anaerobic-anoxic) EBPR models, but these models were developed under anoxic or aerobic conditions only, without an anaerobic stage. The anoxic or aerobic log phase of growth is divided into two main phases: the early log phase, in which acetate and glycogen are consumed to supply enough energy and reducing power for PHB formation and cell growth (phosphorus assimilation), and the late log phase, which ends the simultaneous degradation of PHB and remaining acetate for polyphosphate accumulation. Glycogenolysis plays a significant role in the alternate responses between PHB formation and phosphorus uptake under anoxic or aerobic conditions. After the application of the denitrifying phosphorus-removing bacterium Brachymonas sp. strain P12, aerobic cultivation increases the level of PHB production, and anoxic cultivation further increases phosphorus uptake.  相似文献   

11.
It is known that macromolecular organic matter in aquatic environments, i.e., humic substances, is highly aliphatic. These aliphatic macromolecules, predominantly paraffinic in structure, are prevalent in marine and lacustrine sediments and are believed to originate from algae or bacteria. A comparative study of mixed and pure cultures of green algae and their decomposed residues was performed by using solid-state 13C nuclear magnetic resonance spectroscopy as the primary analytical method. Results obtained in this study confirm the presence of components that are chemically refractory and that are defined as alghumin and hydrolyzed alghumin. These were detected in heterogeneous, homogeneous, and axenic biomasses composed of several genera of Chlorophyta. Although the chemical composition of algal biomass varied with culture conditions, the chemical structure of the alghumin and hydrolyzed alghumin, demonstrated by 13C nuclear magnetic resonance spectroscopy appeared to be constant for members of the Chlorophyta examined in this study. The alghumin was dominated by carbohydrate-carbon, with minor amounts of amide or carboxyl carbon and paraffinic carbon, the latter surviving strong hydrolysis by 6 N HCI (hydrolyzed alghumin). Bacterial decomposition of heterogeneous algal biomass labeled with 13C was conducted under both aerobic and anaerobic conditions to determine chemical structure and stability of the refractory material. The refractory fraction ranged from 33% in aerobic to 44% in anaerobic cultures. The refractory fraction recovered from either aerobic or anaerobic degradation comprised 40% alghumin, which represented an enrichment by 10% relative to the proportion of alghumin derived from whole cells of algae. The paraffinic component in the hydrolyzed alghumin of whole algal cells was found to be 1.8% and increased to 5.1 and 6.9% after aerobic and anaerobic bacterial degradation, respectively. It is concluded that members of the Chlorophyta contain a common insoluble structure composed of paraffinic carbon that is resistant to chemical and bacterial degradation under conditions used in this study. The paraffinic structure is identical to those constituting humin of aquatic origin. Thus, alga-derived macromolecular compounds deposited in aquatic environments (alghumin) probably contribute to sedimentary humic substances.  相似文献   

12.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

13.
Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The 13C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional 15N and 31P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions.  相似文献   

14.
  • 1.1. Euglena gracilis SM-ZK (a non-photosynthetic mutant), cultured in Koren-Hutner medium, containing glucose, malate and glutamate as the main nutrients, were incubated anaerobiosis for 24 hr, and then returned to aerobic conditions. Wax esters, which were synthesized from paramylon (the reserved polysaccharide) for ATP generation under anaerobiosis (wax ester fermentation) were promptly degraded immediately after the cells were replenished with sufficient O2. A large part (about 70%) of the decomposed wax esters were converted back to paramylon.
  • 2.2. When cells were fed with [1–14C]acetate or [U-14C]acetate immediately after transfer from anaerobic to aerobic conditions, radioactivity incorporated into paramylon in the cells fed with [U-14C]acetate was about 1.5-times as high as that with [1-14C]acetate, proposing that glyoxylate cycle participates in the conversion from wax esters to paramylon.
  • 3.3. Paramylon synthesis from [1-14C]acetate was considerably activated by anaerobic preincubation of cells for several hours.
  • 4.4. Isocitrate lyase and malate synthase occurred in cells cultured in Koren-Hutner medium, but the activities were obviously lower than those in cells grown on ethanol. These enzymes were not induced by the anaerobic preincubation.
  相似文献   

15.
The role of glycogen in the uptake of acetate in anaerobic-aerobic activated sludge without enhanced biological phosphorus removal were investigated. Although the polyphosphate content of the sludge was minimized by lowering the phosphorus feeding concentration, significant acetate uptake and accumulation of polyhydroxyalkanoates (PHAs) were observed in proportion to glycogen consumption under anaerobic conditions. The results of anaerobic inhibition studies, which showed suppressive effects on acetate uptake by a glycolysis inhibitor (iodoacetate) but not by a membrane ATPase inhibitor (N,N′-dicyclohexyl carbodiimide), supported an assumption that glycogen degradation through glycolysis supplies the required ATP and reducing power for PHA synthesis from acetate and consumed glycogen. Under subsequent aerobic conditions, the accumulated PHAs were depleted and the consumed glycogen recovered to the same level as that at the start of the anaerobic phase. Iodoacetate also inhibited the recovery of glycogen under aerobic conditions, suggesting that nearly 50% of the PHAs depleted was used for glycogen synthesis through reversed glycolysis.  相似文献   

16.
Csypyrones B1, B2 and B3 are α-pyrones that can be obtained from Aspergillus oryzae expressing CsyB, which is a type III polyketide synthase. We investigated the biosynthesis of the csypyrone B compounds using [1-13C] and [2-13C] acetate feeding experiments. 13C NMR analyses of the methyl esters of the csypyrone B compounds fed with the 13C-labeled acetates showed that the carboxyl carbons of the csypyrone B side-chains were derived from the C-2 methyl carbon of the acetate. These results indicated that fatty acyl starters are involved in the CsyB reaction and that the csypyrone B compounds are formed by the oxidation of side-chains by the host fungus.  相似文献   

17.
18.
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 ± 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.  相似文献   

19.
The oxidation of acetate to hydrogen, and the subsequent conversion of hydrogen and carbon dioxide to methane, has been regarded largely as a niche mechanism occurring at high temperatures or under inhibitory conditions. In this study, 13 anaerobic reactors and sediment from a temperate anaerobic lake were surveyed for their dominant methanogenic population by using fluorescent in situ hybridization and for the degree of acetate oxidation relative to aceticlastic conversion by using radiolabeled [2-14C]acetate in batch incubations. When Methanosaetaceae were not present, acetate oxidation was the dominant methanogenic pathway. Aceticlastic conversion was observed only in the presence of Methanosaetaceae.  相似文献   

20.
Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by 13C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced 13C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type. The donor in RCs of green sulfur bacteria clearly differs from the substantially asymmetric special pair of purple bacteria and appears to be similar to the more symmetric donor of photosystem I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号