首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Rogers PA  Eide L  Klungland A  Ding H 《DNA Repair》2003,2(7):809-817
Endonuclease III, a highly conserved enzyme initiating the base excision repair of oxidized DNA bases, hosts a [4Fe-4S] cluster. Unlike many other iron-sulfur clusters, the [4Fe-4S] cluster of endonuclease III is stable and resistant to both oxidation and reduction. Here we show that the [4Fe-4S] cluster of the E. coli endonuclease III can be readily modified by nitric oxide forming the protein-bound dinitrosyl iron complex in vitro and in vivo. Modification of the [4Fe-4S] cluster completely inhibits the DNA glycosylase activity of the endonuclease III. Remarkably, the enzymatic activity is restored when the [4Fe-4S] cluster is re-assembled in the endonuclease III dinitrosyl iron complex with L-cysteine, cysteine desulfurase (IscS) and ferrous iron in vitro. Furthermore, the nitric oxide-modified [4Fe-4S] cluster in endonuclease III is efficiently repaired in aerobically growing E. coli cells, and this repair does not require new protein synthesis. These results suggest that the E. coli endonuclease III can be reversibly inactivated by nitric oxide via modification of its [4Fe-4S] cluster.  相似文献   

2.
Nitric oxide is a signaling molecule in intercellular communication as well as a powerful weapon used by macrophages to kill tumor cells and pathogenic bacteria. Here, we show that when Escherichia coli cells are exposed to nitric oxide, its ferredoxin [2Fe-2S] cluster is nitrosylated, forming the dinitrosyl iron complex with a characteristic EPR signal at g(av) = 2.04. Such formed ferredoxin dinitrosyl iron complex is efficiently repaired in E. coli cells even in the absence of new protein synthesis. However, the repair activity is completely inactivated once E. coli cells are disrupted, indicating that repairing the ferredoxin dinitrosyl iron complex requires cellular reducing equivalents. In search of such cellular factors, we find that l-cysteine can effectively eliminate the EPR signal of the ferredoxin dinitrosyl iron complex and release the ferrous iron from the complex. In contrast, N-acetyl-l-cysteine and reduced glutathione are much less effective. l-Cysteine seems to have a general function, since it can also remove the otherwise stable dinitrosyl iron complexes from proteins in the cell extracts prepared from the E. coli cells treated with nitric oxide. We propose that l-cysteine is responsible for removing the dinitrosyl iron complexes from the nitric oxide-modified proteins into which a new iron-sulfur cluster will be reassembled.  相似文献   

3.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   

4.
5.
The synthesis of iron-sulfur clusters in Escherichia coli is believed to require a complex protein machinery encoded by the isc (iron-sulfur cluster) operon. The product of one member of this operon, IscA, has been overexpressed, purified, and characterized. It can assemble an air-sensitive [2Fe-2S] cluster as shown by UV-visible and resonance Raman spectroscopy. The metal form but not the apoform of IscA binds ferredoxin, another member of the isc operon, selectively, allowing transfer of iron and sulfide from IscA to ferredoxin and formation of the [2Fe-2S] holoferredoxin. These results thus suggest that IscA is involved in ferredoxin cluster assembly and activation. This is an important function because a functional ferredoxin is required for maturation of other cellular Fe-S proteins.  相似文献   

6.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

7.
Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not proteins without iron-sulfur clusters, are modified, forming protein-bound DNICs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of the "chelatable iron pool" in wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of the chelatable iron pool in cells.  相似文献   

8.
Pyrococcus furiosus ferredoxin is the only known example of a ferredoxin containing a single [4Fe-4S] cluster that has non-cysteinyl ligation of one iron atom, as evidenced by the replacement of a ligating cysteine residue by an aspartic acid residue in the amino acid sequence. The properties of the iron-sulfur cluster in both the aerobically and anaerobically isolated ferredoxin have been characterized by EPR, magnetic circular dichroism, and resonance Raman spectroscopies. The anaerobically isolated ferrodoxin contains a [4Fe-4S]+,2+ cluster with anomalous properties in both the oxidized and reduced states which are attributed to aspartate and/or hydroxide coordination of a specific iron atom. In the reduced form, the cluster exists with a spin mixture of S = 1/2 (20%) and S = 3/2 (80%) ground states. The dominant S = 3/2 form has a unique EPR spectrum that can be rationalized by an S = 3/2 spin Hamiltonian with E/D = 0.22 and D = +3.3 +/- 0.2 cm-1. The oxidized cluster has an S = 0 ground state, and the resonance Raman spectrum is characteristic of a [4Fe-4S]2+ cluster except for the unusually high frequency for the totally symmetric breathing mode of the [4Fe-4S] core, 342 cm-1. Comparison with Raman spectra of other [4Fe-4S]2+ centers suggests that this behavior is diagnostic of anomalous coordination of a specific iron atom. The iron-sulfur cluster is shown to undergo facile and quantitative [4Fe-4S] in equilibrium [3Fe-4S] interconversion, and the oxidized and reduced forms of the [3Fe-4S] cluster have S = 1/2 and S = 2 ground states, respectively. In both redox states the [3Fe-4S]0,+ cluster exhibits spectroscopic properties analogous to those of similar clusters in other bacterial ferredoxins, suggesting non-cysteinyl coordination for the iron atom that is removed by ferricyanide oxidation. Aerobic isolation induces partial degradation of the [4Fe-4S] cluster to yield [3Fe-4S] and possibly [2Fe-2S] centers. Evidence is presented to show that only the [4Fe-4S] form of this ferredoxin exists in vivo.  相似文献   

9.
The 2.3 A resolution crystal structure of a [2Fe-2S] cluster containing ferredoxin from Aquifex aeolicus reveals a thioredoxin-like fold that is novel among iron-sulfur proteins. The [2Fe-2S] cluster is located near the surface of the protein, at a site corresponding to that of the active-site disulfide bridge in thioredoxin. The four cysteine ligands are located near the ends of two surface loops. Two of these ligands can be substituted by non-native cysteine residues introduced throughout a stretch of the polypeptide chain that forms a protruding loop extending away from the cluster. The presence of homologs of this ferredoxin as components of more complex anaerobic and aerobic electron transfer systems indicates that this is a versatile fold for biological redox processes.  相似文献   

10.
The biogenesis of iron-sulfur [Fe-S] clusters requires the coordinated delivery of both iron and sulfide. Sulfide is provided by cysteine desulfurases that use L-cysteine as sulfur source. So far, the physiological iron donor has not been clearly identified. CyaY, the bacterial ortholog of frataxin, an iron binding protein thought to be involved in iron-sulfur cluster formation in eukaryotes, is a good candidate because it was shown to bind iron. Nevertheless, no functional in vitro studies showing an involvement of CyaY in [Fe-S] cluster biosynthesis have been reported so far. In this paper we demonstrate for the first time a specific interaction between CyaY and IscS, a cysteine desulfurase participating in iron-sulfur cluster assembly. Analysis of the iron-loaded CyaY protein demonstrated a strong binding of Fe(3+) and a weak binding of Fe(2+) by CyaY. Biochemical analysis showed that the CyaY-Fe(3+) protein corresponds to a mixture of monomer, intermediate forms (dimer-pentamers), and oligomers with the intermediate one corresponding to the only stable and soluble iron-containing form of CyaY. Using spectroscopic methods, this form was further demonstrated to be functional in vitro as an iron donor during [Fe-S] cluster assembly on the scaffold protein IscU in the presence of IscS and cysteine. All of these results point toward a link between CyaY and [Fe-S] cluster biosynthesis, and a possible mechanism for the process is discussed.  相似文献   

11.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

12.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

13.
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.  相似文献   

14.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

15.
Iron-sulfur proteins are essential in the photosynthetic system and many other biological processes. We have isolated and characterized enzymes driving the formation of iron-sulfur clusters from Synechocystis sp. PCC6803. Two genes (slr0387 and sll0704), showing similarity to nifS of Azotobacter vinelandii, were cloned, and their gene products (SsCsdl and SsCsd2) were purified. They catalyzed the desulfuration of L-cysteine. Reconstitution of a [2Fe-2S] cluster of cyanobacterial ferredoxin proceeded much faster in the presence of L-cysteine and either of these enzymes than when using sodium sulfide. These results suggest that SsCsdl and SsCsd2 facilitate the iron-sulfur cluster assembly by producing inorganic sulfur from L-cysteine. Synechocystis sp. PCC6803 has no gene coding for a protein with similarity to the N-terminal domain of NifU of A. vinelandii, which is believed to cooperate with NifS to assemble iron-sulfur clusters. Thus, the cluster formation in the cyanobacterium probably proceeds through a mechanism that is different from that in A. vinelandii.  相似文献   

16.
Kakuta Y  Horio T  Takahashi Y  Fukuyama K 《Biochemistry》2001,40(37):11007-11012
Escherichia coli ferredoxin (Fdx) is an adrenodoxin-type [2Fe-2S] ferredoxin. Recent genetic analyses show that it has an essential role in the maturation of various iron-sulfur (Fe-S) proteins. Fdx probably functions as a component of the complex machinery responsible for the biogenesis of Fe-S clusters. Its crystal structure was determined by the multiple-wavelength anomalous dispersion method using the iron atoms in the [2Fe-2S] cluster of the protein and then refined to R and R(free) values of 0.255 and 0.278, respectively, at 1.7 A resolution. The structure of Fdx is similar to the structures of bovine adrenodoxin (Adx) and Pseudomonas putida putidaredoxin (Pdx) whose respective root-mean-square deviations of the corresponding Calpha atoms are 1.8 and 2.2 A. This analysis also revealed the structure of the C-terminal residues protruding into the solvent, which is missing in Adx and Pdx. The [2Fe-2S] cluster is located at the edge of the molecule and bonds with the Sgamma atoms of Cys42, Cys48, Cys51, and Cys87. Electrostatic potential analysis showed that the surface of Fdx has two negatively charged areas separated by a hydrophobic lane. One is conserved on the surface of Adx which is an area of interaction with adrenodoxin reductase. Cys46 is located on the molecular surface in the vicinity of the [2Fe-2S] cluster, an indication that it may be involved in Fe-S cluster formation.  相似文献   

17.
IscA homologues are involved in iron-sulfur cluster biosynthesis. In the non-nitrogen-fixing cyanobacterium Synechocystis PCC 6803, there are two IscA homologues, SLR1417 and SLR1565 (designated IscA1 and IscA2), of which only IscA2 exists as a protein complex with the HEAT-repeat-containing protein, SLR1098 (IaiH). We observed that the absorption spectrum of the recombinant IscA2/IaiH complex resembles that of IscA2 alone, although it is sharper. In the presence of dithiothreitol, the [2Fe-2S] cluster of IscA2 alone, but not of the IscA2/IaiH complex, became reductively labile upon the addition of sodium dithionite. This implies that the IscA2 moiety of the [2Fe-2S] cluster is stabilized by the presence of IaiH. The [2Fe-2S] cluster of the IscA2/IaiH complex was destabilized by sodium dithionite in the absence of dithiothreitol, suggesting that the in vivo stability of the iron-sulfur cluster in the IscA2/IaiH complex is influenced by the redox state of cellular thiols. When any one of three conserved cysteine residues in IscA2, potential ligands for the [2Fe-2S] cluster, was replaced with serine, the amount of assembled [2Fe-2S] cluster and protein complex was significantly reduced in E. coli cells. The cysteine mutated IscA2/IaiH complexes that were present all contained a [2Fe-2S]-like cluster suggesting that the assembly of a stable iron-sulfur cluster bound to IscA2 is required for efficient and stable complex formation. Truncated IaiH proteins were analyzed using the yeast two-hybrid assay to identify the essential domain of IaiH that interacts physically with IscA2. At least 2 of the 5 N-terminal HEAT repeats of IaiH were found to be required for interaction with IscA2.  相似文献   

18.
Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. In vivo [Fe-S] cluster biogenesis requires enzymes involved in iron and sulfur mobilization, assembly of clusters, and delivery to their final acceptor. In these systems, a cysteine desulfurase is responsible for the release of sulfide ions, which are incorporated into a scaffold protein for subsequent [Fe-S] cluster assembly. Although three machineries have been shown to be present in Proteobacteria for [Fe-S] cluster biogenesis (NIF, ISC, and SUF), only the SUF machinery has been found in Firmicutes. We have recently described the structural similarities and differences between Enterococcus faecalis and Escherichia coli SufU proteins, which prompted the proposal that SufU is the scaffold protein of the E. faecalis sufCDSUB system. The present work aims at elucidating the biological roles of E. faecalis SufS and SufU proteins in [Fe-S] cluster assembly. We show that SufS has cysteine desulfurase activity and cysteine-365 plays an essential role in catalysis. SufS requires SufU as activator to [4Fe-4S] cluster assembly, as its ortholog, IscU, in which the conserved cysteine-153 acts as a proximal sulfur acceptor for transpersulfurization reaction.  相似文献   

19.
The contribution of cysteine desulfurase, the NifS protein of Klebsiella pneumoniae and the IscS protein of Escherichia coli, to the biotin synthase reaction was investigated in in vitro and in vivo reaction systems with E. coli. When the nifS and nifU genes of K. pneumoniae were coexpressed in E. coli, NifS and NifU proteins in complex (NifU/S complex) and NifU monomer forms were observed. Both the NifU/S complex and the NifU monomer stimulated the biotin synthase reaction in the presence of L-cysteine in an in vitro reaction system. The NifU/S complex enhanced the production of biotin from dethiobiotin by the cells growing in an in vivo reaction system. Moreover, the IscS protein of E. coli stimulated the biotin synthase reaction in the presence of L-cysteine in the cell-free system. These results strongly suggest that cysteine desulfurase participates in the biotin synthase reaction, probably by supplying sulfur to the iron-sulfur cluster of biotin synthase.  相似文献   

20.
Amino acid sequence of [2Fe-2S] ferredoxin from Clostridium pasteurianum   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the [2Fe-2S] ferredoxin from the saccharolytic anaerobe Clostridium pasteurianum has been determined by automated Edman degradation of the whole protein and of peptides obtained by tryptic and by staphylococcal protease digestion. The polypeptide chain consists of 102 amino acids, including 5 cysteine residues in positions 11, 14, 24, 56, and 60. The sequence has been analyzed for hydrophilicity and for secondary structure predictions. In its native state the protein is a dimer, each subunit containing one [2Fe-2S] cluster, and it has a molecular weight of 23,174, including the four iron and inorganic sulfur atoms. The extinction coefficient of the native protein is 19,400 M-1 cm-1 at 463 nm. The positions of the cysteine residues, four of which are most probably the ligands of the [2Fe-2S] cluster, on the polypeptide chain of this protein are very different from those found in other [2Fe-2S] proteins, and in other ferredoxins in general. In addition, whole sequence comparisons of the [2Fe-2S] ferredoxin from C. pasteurianum with a number of other ferredoxins did not reveal any significant homologies. The likely occurrence of several phylogenetically unrelated ferredoxin families is discussed in the light of these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号