首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In humans, thromboxane A2 signals through two thromboxane A2 receptor (TP) isoforms termed TP alpha and TP beta. Signaling by TP alpha, but not TP beta, is subject to prostacyclin-induced desensitization mediated by direct protein kinase (PK) A phosphorylation where Ser329 represents the phosphotarget (Walsh, M. T., Foley, J. F., and Kinsella, B. T. (2000) J. Biol. Chem. 275, 20412-20423). In the current study, the effect of the vasodilator nitric oxide (NO) on intracellular signaling by the TP isoforms was investigated. The NO donor 3-morpholinosydnonimine, HCl (SIN-1) and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br-cGMP) functionally desensitized U46619-mediated calcium mobilization and inositol 1,4,5-trisphosphate generation by TP alpha whereas signaling by TP beta was unaffected by either agent. NO-mediated desensitization of TP alpha signaling occurred through a PKG-dependent, PKA- and PKC-independent mechanism. TP alpha, but not TP beta, was efficiently phosphorylated by PKG in vitro and underwent NO/PKG-mediated phosphorylation in whole cells. Deletion/site-directed mutagenesis and metabolic labeling studies identified Ser331 as the target residue of NO-induced PKG phosphorylation of TP alpha. Although TP alpha S331A was insensitive to NO/PKG-desensitization, similar to wild type TP alpha its signaling was fully desensitized by the prostacyclin receptor agonist cicaprost occurring through a PKA-dependent mechanism. Conversely, signaling by TP alpha S329A was insensitive to cicaprost stimulation whereas it was fully desensitized by NO/PKG signaling. In conclusion, TP alpha undergoes both NO- and prostacyclin-mediated desensitization that occur through entirely independent mechanisms involving direct PKG phosphorylation of Ser331, in response to NO, and PKA phosphorylation of Ser329, in response to prostacyclin, within the unique carboxyl-terminal tail domain of TP alpha. On the other hand, signaling by TP beta is unaffected by either NO or prostacyclin.  相似文献   

2.
Intermediate filament (IF) proteins are constituents of the cytoskeleton, conferring resistance to mechanical stress, and are encoded by a dispersed multigene family. In man we have identified two isoforms (180 and 150 kDa) of the IF protein synemin. Synemin alpha and beta have a very short N-terminal domain of 10 amino acids and a long C-terminal domain consisting of 1243 amino acids for the alpha isoform and 931 amino acids for the beta isoform. An intronic sequence of the synemin beta isoform is used as a coding sequence for synemin alpha. Both mRNA isoforms (6.5 and 7.5 kb) result from alternative splicing of the same gene, which has been assigned to human chromosome 15q26.3. Analyses by Northern and Western blot revealed that isoform beta is the predominant isoform in striated muscles, whereas both isoforms (alpha and beta) are present in almost equal quantities in smooth muscles. Co-transfection and immunolabeling experiments indicate that both synemin isoforms are incorporated with desmin to form heteropolymeric IFs. Furthermore synemin and desmin are found aggregated together in certain pathological situations.  相似文献   

3.
FHL1, FHL2, and FHL3 are members of the four and one-half LIM domain protein subclass that are expressed in striated muscles. Here we show that FHL2 and FHL3 are novel alpha(7)beta(1) integrin-interacting proteins. They bind both the alpha- and the beta-subunit as well as different splice isoforms. The minimal binding sites for FHL2 and FHL3 on beta(1A)-chain overlap, whereas on alpha(7A) and alpha(7B) subunits they are situated adjacent. Determining the binding sites for integrins on FHL2 or FHL3 revealed that the suprastructure of the whole molecule is important for these associations, rather than any single LIM domain. Immunofluorescence studies with cells expressing full-length FHL proteins or their deletion mutants showed that FHL2 and FHL3 but not FHL1 colocalize with integrins at cell adhesion sites. Further, their recruitment to the membrane results from binding to either the alpha- or the beta-chain of the integrin receptor. The association of FHL2 or FHL3 with integrin receptors neither influences attachment of cells to different substrates nor changes their migration capacity. However, in cardiac and skeletal muscles, FHL2 and FHL3, respectively, are colocalized with alpha(7)beta(1) integrin receptor at the periphery of Z-discs, suggesting a role in mechanical stabilization of muscle cells.  相似文献   

4.
5.
G protein-coupled receptors (GPCRs) mediate the ability of a diverse array of extracellular stimuli to control intracellular signaling. Many GPCRs are phosphorylated by G protein-coupled receptor kinases (GRKs), a process that mediates agonist-specific desensitization in many cells. Although GRK binding to activated GPCRs results in kinase activation and receptor phosphorylation, relatively little is known about the mechanism of GRK/GPCR interaction or how this interaction results in kinase activation. Here, we used the alpha2A-adrenergic receptor (alpha(2A)AR) as a model to study GRK/receptor interaction because GRK2 phosphorylation of four adjacent serines within the large third intracellular loop of this receptor is known to mediate desensitization. Various domains of the alpha(2A)AR were expressed as glutathione S-transferase fusion proteins and tested for the ability to bind purified GRK2. The second and third intracellular loops of the alpha(2A)AR directly interacted with GRK2, whereas the first intracellular loop and C-terminal domain did not. Truncation mutagenesis identified three discrete regions within the third loop that contributed to GRK2 binding, the membrane proximal N- and C-terminal regions as well as a central region adjacent to the phosphorylation sites. Site-directed mutagenesis revealed a critical role for specific basic residues within these regions in mediating GRK2 interaction with the alpha(2A)AR. Mutation of these residues within the holo-alpha(2A)AR diminished GRK2-promoted phosphorylation of the receptor as well as the ability of the kinase to be activated by receptor binding. These studies provide new insight into the mechanism of interaction and activation of GRK2 by GPCRs and suggest that GRK2 binding is critical not only for receptor phosphorylation but also for full activity of the kinase.  相似文献   

6.
The signaling molecule nitric oxide (NO) exerts most of its effects by the stimulation of the NO-sensitive guanylyl cyclase. Two isoforms of the NO receptor molecule exist: the ubiquitously occurring alpha(1)beta(1) and the alpha(2)beta(1) with a more limited distribution. As the isoforms are functionally indistinguishable, the physiological relevance of these isoforms remained unclear. The neuronal NO synthase has been reported to be associated with PSD-95. Here, we demonstrate the interaction of the so far unnoticed alpha(2)beta(1) isoform with PSD-95 in rat brain as shown by coprecipitation. The interaction is mediated by the alpha(2) C-terminal peptide and the third PDZ domain of PSD-95. As a consequence of the PSD-95 interaction, the so far considered "soluble" alpha(2)beta(1) isoform is recruited to the membrane fraction of synaptosomes, whereas the alpha(1)beta(1) isoform is found in the cytosol. Our results establish the alpha(1)beta(1) as the cytosolic and the alpha(2)beta(1) as the membrane-associated NO-sensitive guanylyl cyclase and suggest the alpha(2)beta(1) isoform as the sensor for the NO formed by the PSD-95-associated neuronal NO synthase.  相似文献   

7.
Murine nuclear factor of activated T cells (NFAT)2.alpha/beta differ by 42 and 28 unique amino-terminal amino acids and are differentially expressed. Both isoforms share conserved domains that regulate DNA-binding and subcellular localization. A genetic "one-hybrid" assay was used to define two distinct transactivation (TA) domains: in addition to a conserved TAD present in both isoforms, a second, novel TAD exists within the beta-specific amino terminus. Pharmacologic inhibitors G?6976 and rottlerin demonstrate that both conventional and novel protein kinase C (PKC) family members regulate endogenous mast cell NFAT activity, and NFAT2 TA. Overexpression of dominant active PKC (which has been implicated in immune receptor signaling) induces NFAT2.alpha/beta TA. Mutations within the smallest PKC-responsive transactivation domain demonstrate that the PKC effect is at least partially indirect. Significantly, the beta-specific domain confers greater ability to TA in response to treatment with phorbol 12-myristate 13-acetate/ionomycin or lipopolysaccharide, and unique sensitivity to FcepsilonRI signaling. Accordingly, overexpression of NFAT2.beta results in significantly greater NFAT- and interleukin-4 reporter activity than NFAT2.alpha. These results suggest that whereas NFAT2 isoforms may share redundant DNA-binding preferences, there are specialized functional consequences of their isoform-specific domains.  相似文献   

8.
The integrin alpha(v)beta(3) is the major receptor mediating the attachment of osteoclasts to the extracellular matrix in bone and plays a critical role in bone resorption and bone remodeling. Most of the ligands interacting with the alpha(v)beta(3) receptor contain an Arg-Gly-Asp (RGD) motif. Recently, we have identified two small RGD peptides, containing a benzophenone moiety at either the carboxyl or amino terminus, that photo-cross-linked within the beta(3)[99-118] [Bitan, G., et al. (1999) Biochemistry 38, 3414-3420] or the beta(3)[167-171] [Bitan, G., et al. (2000) Biochemistry 39, 11014-11023] sequence, respectively, of the alpha(v)beta(3) receptor in a selective fashion. Here, we report the synthesis of a photoreactive analogue of echistatin (a 49-amino acid peptide), a potent RGD-containing antagonist of the alpha(v)beta(3) receptor both in vitro and in vivo. This bioactive analogue is substituted at position 45 with a p-benzoyl moiety (pBz(2)), located within the flexible C-terminal domain and removed 20 amino acid residues from the R(24)GD(26) triad. This C-terminal domain was reported to contribute to receptor binding affinity by acting as an auxiliary binding site. The radiolabeled (125)I-[Arg(35),Lys(45)(N(epsilon)-pBz(2))]-echistatin photo-cross-links effectively to a site within the beta(3)[209-220] sequence. Residues in this domain have been reported to be part of the metal ion-dependent adhesion site (MIDAS). Receptor fragments overlapping this domain were reported to bind to fibrinogen and block fibrinogen binding to alpha(IIb)beta(3), the platelet integrin receptor. Taken together, position 45 in echistatin, located within an auxiliary binding site in echistatin, cross-links to a site distinct from the two previously reported sites, beta(3)[99-118] and beta(3)[167-171], which cross-link to photophores flanking the RGD triad. These cross-linking data support the hypothesis that the ligand-bound conformation of the integrin beta(3) subunit differs from the known conformation of I domains.  相似文献   

9.
The 8-iso-prostaglandin F(2alpha), a prostanoid produced in vivo by cyclooxygenase-independent free-radical-catalyzed lipid peroxidation, acts as a partial agonist on the thromboxane receptor (TXA(2)R) and is a potent vasoconstrictor in the oxidatively stressed isolated perfused rat heart. We hypothesized that the response in the isolated heart may be due to augmentation of TXA(2)R density, which may be initiated by the presence of oxidative radicals. Previous studies have shown that TXA(2)R density is increased during atherosclerosis on both the medial and intimal smooth muscle layers in human coronary arteries. Here we describe the effect of oxidative stress on TXA(2)R. The thromboxane A(2) receptor beta isoform (TXA(2)Rbeta) was transiently expressed in COS-7 cells. Immunofluorescence suggested that the presence of H(2)O(2) increased translocation of TXA(2)Rbeta from the endoplasmic reticulum (ER) to the Golgi complex. H(2)O(2) treatment also increased binding of a TXA(2)R antagonist ([(3)H]SQ29548) to membranes. Degradation kinetics of TXA(2)Rbeta following cycloheximide treatment, a protein synthesis inhibitor, suggested not only that TXA(2)Rbeta is a short-lived protein predominantly localized to the ER but also that TXA(2)Rbeta degradation is modulated in the presence of H(2)O(2). Our results indicate that oxidative stress induces maturation and stabilization of the TXA(2)Rbeta protein probably by intracellular translocation. Importantly, these observations also suggest that TXA(2)Rbeta levels are modulated by ER-associated degradation and controlled by the efficiency of transport to post-ER compartments. Stabilization of the TXA(2)Rbeta by translocation from a degradative compartment, i.e. the ER, can account for the augmentation of receptor density observed in vivo.  相似文献   

10.
Human thromboxane A(2) receptor (TP) consists of two alternatively spliced isoforms, TP alpha and TP beta, which differ in their cytoplasmic tails. To examine the functional difference between TP alpha and TP beta, we searched proteins bound to C termini of TP isoforms by a yeast two-hybrid system, and found that proteasome subunit alpha 7 and proteasome activator PA28 gamma interacted potently with the C terminus of TP beta. The binding of TP beta with alpha 7 and PA28 gamma was confirmed by co-immunoprecipitation and pull-down assays. MG-132 and lactacystin, proteasome inhibitors, increased cell-surface expression of TP beta, but not TP alpha. Scatchard analysis of [(3)H]SQ29548 binding revealed that the B(max) was higher in transiently TP alpha-expressing cells than TP alpha-expressing cells. In addition, TP-mediated phosphoinositide hydrolysis was clearly observed in TP alpha-, but not TP beta-expressing cells. These results suggest that TP beta binds to alpha 7 and PA28 gamma, and the cell-surface expression of TP beta is lower than that of TP alpha through the negative regulation of its membrane traffic by proteasomes.  相似文献   

11.
The docking protein FRS2 was implicated in the transmission of extracellular signals from the fibroblast growth factor (FGF) or nerve growth factor (NGF) receptors to the Ras/mitogen-activated protein kinase signaling cascade. The two members of the FRS2 family, FRS2alpha and FRS2beta, are structurally very similar. Each is composed of an N-terminal myristylation signal, a phosphotyrosine-binding (PTB) domain, and a C-terminal tail containing multiple binding sites for the SH2 domains of the adapter protein Grb2 and the protein tyrosine phosphatase Shp2. Here we show that the PTB domains of both the alpha and beta isoforms of FRS2 bind directly to the FGF or NGF receptors. The PTB domains of the FRS2 proteins bind to a highly conserved sequence in the juxtamembrane region of FGFR1. While FGFR1 interacts with FRS2 constitutively, independent of ligand stimulation and tyrosine phosphorylation, NGF receptor (TrkA) binding to FRS2 is strongly dependent on receptor activation. Complex formation with TrkA is dependent on phosphorylation of Y490, a canonical PTB domain binding site that also functions as a binding site for Shc (NPXpY). Using deletion and alanine scanning mutagenesis as well as peptide competition assays, we demonstrate that the PTB domains of the FRS2 proteins specifically recognize two different primary structures in two different receptors in a phosphorylation-dependent or -independent manner. In addition, NGF-induced tyrosine phosphorylation of FRS2alpha is diminished in cells that overexpress a kinase-inactive mutant of FGFR1. This experiment suggests that FGFR1 may regulate signaling via NGF receptors by sequestering a common key element which both receptors utilize for transmitting their signals. The multiple interactions mediated by FRS2 appear to play an important role in target selection and in defining the specificity of several families of receptor tyrosine kinases.  相似文献   

12.
We report the cloning and primary structure of the Drosophila insulin receptor gene (inr), functional expression of the predicted polypeptide, and the isolation of mutations in the inr locus. Our data indicate that the structure and processing of the Drosophila insulin proreceptor are somewhat different from those of the mammalian insulin and IGF 1 receptor precursors. The INR proreceptor (M(r) 280 kDa) is processed proteolytically to generate an insulin-binding alpha subunit (M(r) 120 kDa) and a beta subunit (M(r) 170 kDa) with protein tyrosine kinase domain. The INR beta 170 subunit contains a novel domain at the carboxyterminal side of the tyrosine kinase, in the form of a 60 kDa extension which contains multiple potential tyrosine autophosphorylation sites. This 60 kDa C-terminal domain undergoes cell-specific proteolytic cleavage which leads to the generation of a total of four polypeptides (alpha 120, beta 170, beta 90 and a free 60 kDa C-terminus) from the inr gene. These subunits assemble into mature INR receptors with the structures alpha 2(beta 170)2 or alpha 2(beta 90)2. Mammalian insulin stimulates tyrosine phosphorylation of both types of beta subunits, which in turn allows the beta 170, but not the beta 90 subunit, to bind directly to p85 SH2 domains of PI-3 kinase. It is likely that the two different isoforms of INR have different signaling potentials. Finally, we show that loss of function mutations in the inr gene, induced by either a P-element insertion occurring within the predicted ORF, or by ethylmethane sulfonate treatment, render pleiotropic recessive phenotypes that lead to embryonic lethality. The activity of inr appears to be required in the embryonic epidermis and nervous system among others, since development of the cuticle, as well as the peripheral and central nervous systems are affected by inr mutations.  相似文献   

13.
14.
G protein-coupled receptors (GPCRs) represent a vast family of transmembrane proteins involved in the regulation of several physiological responses. The thromboxane A2 receptor (present as two isoforms: TP alpha and TP beta) is a GPCR displaying diverse pharmacological effects. As seen for many other GPCRs, TP beta is regulated by agonist-induced internalization. In the present study, we report the identification by yeast two-hybrid screening of Nm23-H2, a nucleoside diphosphate kinase, as a new interacting molecular partner with the C-terminal tail of TP beta. This interaction was confirmed in a cellular context when Nm23-H2 was co-immunoprecipitated with TP beta in HEK293 cells, a process dependent on agonist stimulation of the receptor. We observed that agonist-induced internalization of TP beta was regulated by Nm23-H2 through modulation of Rac1 signaling. Immunofluorescence microscopy in HEK293 cells revealed that Nm23-H2 had a cytoplasmic and nuclear localization but was induced to translocate to the plasma membrane upon stimulation of TP beta to show extensive co-localization with the receptor. Our findings represent the first demonstration of an interaction of an Nm23 protein with a membrane receptor and constitute a novel molecular regulatory mechanism of GPCR endocytosis.  相似文献   

15.
Eukaryotic cells adhere to at least two different regions of the fibronectin molecule: a central domain present in all fibronectin isoforms, and the type III connecting segment domain (IIICS), the expression of which is controlled by complex alternative splicing of precursor mRNA. Using affinity chromatography on a matrix containing a synthetic peptide ligand (CS1) representing the strongest active site within the IIICS, we have isolated the human melanoma cell receptor recognizing this region of fibronectin. The receptor is a complex of two polypeptides with subunit molecular masses of 145 and 125 kDa. This heterodimeric structure resembles that of receptors for other extracellular matrix proteins. Immunological analysis with specific antibodies identified these polypeptides as the integrin subunits alpha 4 and beta 1. In addition, antifunctional monoclonal antibodies directed against either alpha 4 or beta 1, but not against other integrin subunits, were potent inhibitors of CS1-mediated melanoma cell spreading. Furthermore, when the function of the central cell-binding domain was blocked, anti-alpha 4 and anti-beta 1 antibodies abolished spreading of A375-M cells on fibronectin, indicating that alpha 4 beta 1 is an authentic fibronectin receptor. Taken together, these results identify the human fibronectin IIICS receptor as the integrin heterodimer alpha 4 beta 1.  相似文献   

16.
A differentiated liver cell (HepG2), which exhibits a dose-dependent growth-stimulatory and growth-inhibitory response to heparin-binding fibroblast growth factor type 1 (FGF-1), displays high- and low-affinity receptor phenotypes and expresses specific combinatorial splice variants alpha 1, beta 1, and alpha 2 of the FGF receptor (FGF-R) gene (flg). The extracellular domains of the alpha and beta variants consist of three and two immunoglobulin loops, respectively, while the intracellular variants consist of a tyrosine kinase (type 1) isoform and a kinase-defective (type 2) isoform. The type 2 isoform is also devoid of the two major intracellular tyrosine autophosphorylation sites (Tyr-653 and Tyr-766) in the type 1 kinase. An analysis of ligand affinity, dimerization, autophosphorylation, and interaction with src homology region 2 (SH2) substrates of the recombinant alpha 1, beta 1, and alpha 2 isoforms was carried out to determine whether dimerization of the combinatorial splice variants might explain the dose-dependent opposite mitogenic effects of FGF. Scatchard analysis indicated that the alpha and beta isoforms exhibit low and high affinity for ligand, respectively. The three combinatorial splice variants dimerized in all combinations. FGF enhanced dimerization and kinase activity, as assessed by receptor autophosphorylation. Phosphopeptide analysis revealed that phosphorylation of Tyr-653 was reduced relative to phosphorylation of Tyr-766 in the type 1 kinase component of heterodimers of the type 1 and type 2 isoforms. The SH2 domain substrate, phospholipase C gamma 1 (PLC gamma 1), associated with the phosphorylated type 1-type 2 heterodimers but was phosphorylated only in preparations containing the type 1 kinase homodimer. The results suggest that phosphorylation of Tyr-653 within the kinase catalytic domain, but not Tyr-766 in the COOH-terminal domain, may be stringently dependent on a trans intermolecular mechanism within FGF-R kinase homodimers. Although phosphotyrosine 766 is sufficient for interaction of PLC gamma 1 and other SH2 substrates with the FGF-R kinase, phosphorylation and presumably activation of substrates require the kinase homodimer and phosphorylation of Tyr-653. We propose that complexes of phosphotyrosine 766 kinase monomers and SH2 domain signal transducers may constitute unactivated presignal complexes whose active or inactive fate depends on homodimerization with a kinase or heterodimerization with a kinase-defective monomer, respectively. The results suggest a mechanism for control of signal transduction by different concentrations of ligand through heterodimerization of combinatorial splice variants from the same receptor gene.  相似文献   

17.
Sepp1 supplies selenium to tissues via receptor-mediated endocytosis. Mice, rats, and humans have 10 selenocysteines in Sepp1, which are incorporated via recoding of the stop codon, UGA. Four isoforms of rat Sepp1 have been identified, including full-length Sepp1 and three others, which terminate at the second, third, and seventh UGA codons. Previous studies have shown that the longer Sepp1 isoforms bind to the low density lipoprotein receptor apoER2, but the mechanism remains unclear. To identify the essential residues for apoER2 binding, an in vitro Sepp1 binding assay was developed using different Sec to Cys substituted variants of Sepp1 produced in HEK293T cells. ApoER2 was found to bind the two longest isoforms. These results suggest that Sepp1 isoforms with six or more selenocysteines are taken up by apoER2. Furthermore, the C-terminal domain of Sepp1 alone can bind to apoER2. These results indicate that apoER2 binds to the Sepp1 C-terminal domain and does not require the heparin-binding site, which is located in the N-terminal domain. Site-directed mutagenesis identified three residues of Sepp1 that are necessary for apoER2 binding. Sequential deletion of extracellular domains of apoER2 surprisingly identified the YWTD β-propeller domain as the Sepp1 binding site. Finally, we show that apoER2 missing the ligand-binding repeat region, which can result from cleavage at a furin cleavage site present in some apoER2 isoforms, can act as a receptor for Sepp1. Thus, longer isoforms of Sepp1 with high selenium content interact with a binding site distinct from the ligand-binding domain of apoER2 for selenium delivery.  相似文献   

18.
TRPM2 is a member of the transient receptor potential melastatin-related (TRPM) family of cation channels, which possesses both ion channel and ADP-ribose hydrolase functions. TRPM2 has been shown to gate in response to oxidative and nitrosative stresses, but the mechanism through which TRPM2 gating is induced by these types of stimuli is not clear. Here we show through structure-guided mutagenesis that TRPM2 gating by ADP-ribose and both oxidative and nitrosative stresses requires an intact ADP-ribose binding cleft in the C-terminal nudix domain. We also show that oxidative/nitrosative stress-induced gating can be inhibited by pharmacological reagents predicted to inhibit NAD hydrolysis to ADP-ribose and by suppression of ADP-ribose accumulation by cytosolic or mitochondrial overexpression of an enzyme that specifically hydrolyzes ADP-ribose. Overall, our data are most consistent with a model of oxidative and nitrosative stress-induced TRPM2 activation in which mitochondria are induced to produce free ADP-ribose and release it to the cytosol, where its subsequent accumulation induces TRPM2 gating via interaction within a binding cleft in the C-terminal NUDT9-H domain of TRPM2.  相似文献   

19.
Recent studies have identified a new family of cytokine receptors, which is primarily characterized by the conservation of periodically interspersed four cysteine residues and the W-S-X-W-S sequence ('WS motif') within the extracellular domain. However, the role of such conserved structures still remains elusive, in particular that of the WS motif. Interleukin-2 (IL-2) is known to play a critical role in the clonal expansion of antigen-stimulated T lymphocytes, and the IL-2 signal is delivered by one of the receptor components, the IL-2 receptor beta (IL-2R beta) chain. The IL-2R beta chain, unlike the IL-2R alpha chain, belongs to this receptor family. In the present study, we analyzed the function of the WS motif of IL-2R beta (Trp194-Ser195-Pro196-Trp197-Ser198) with the use of site-directed mutagenesis. Our results indicate the critical role of the two Trp residues in the proper folding of the IL-2R beta extracellular domain and point to the general functional importance of the WS motif in the new cytokine receptor family.  相似文献   

20.
Two structurally related subtypes of oestrogen receptor (ER), known as alpha (ER alpha, NR3A1) and beta (ER beta, NR3A2) have been identified. ER beta mRNA and protein have been detected in a wide range of tissues including the vasculature, bone, and gonads in both males and females, as well as in cancers of the breast and prostate. In many tissues the pattern of expression of ER beta is distinct from that of ER alpha. A number of variant isoforms of the wild type beta receptor (ER beta 1), have been identified. In the human these include: (1). use of alternative start sites within the mRNA leading to translation of either a long (530 amino acids, hER beta 1L) or a truncated form (487aa hER beta 1s); (2). deletion of exons by alternative splicing; (3). formation of several isoforms (ER beta 2-beta 5) due to alternative splicing of exons encoding the carboxy terminus (F domain). We have raised monoclonal antibodies specific for hER beta1 as well as to three of the C terminal isoforms (beta2, beta 4 and beta 5). Using these antibodies we have found that ER beta 2, beta 4 and beta 5 proteins are expressed in nuclei of human tissues including the ovary, placenta, testis and vas deferens.In conclusion, in addition to the differential expression of full length ER alpha and ER beta a number of ER variant isoforms have been identified. The impact of the expression of these isoforms on cell responsiveness to oestrogens may add additional complexity to the ways in which oestrogenic ligands influence cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号