首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Summary Cytoplasmic male sterility (cms) was found in plants derived from the F2 progeny of fertile, normal cytoplasm plants of the inbred R181 pollinated with a genetic stock carrying the recessive nuclear gene, iojap. The male sterile plants were maintained by back-crossing with the inbred W182BN which maintains all known sources of cytoplasmic male sterility. The new male sterile progeny were found to exhibit stable male sterility under field conditions in two environments. However, they were partially fertile in the hot, dry summer of 1983 at Aurora, NY. It was found that these lines were restored by lines that characteristically restore cms S group cytoplasms. Pollen phenotype studies indicated that the restoration was gametophytic in nature, also characteristic of the cms S group. Agarose gel electrophoresis of undigested mitochondrial DNA (mtDNA) from these steriles indicated that these lines have the S-1 and S-2 episomes characteristic of the cms S group. Restriction endonuclease digest patterns of mtDNA from these sterile lines digested with BamH I indicated that these steriles fit into the CA subgroup of the cms S group. The new source of cms has been designated cms Ij-1.  相似文献   

3.
Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis.  相似文献   

4.
Advantages and disadvantages in using functional male sterility (positional sterile — ps, positional sterile 2 — ps 2, and excerted stigma — ex) in tomato hybrid seed production and attempts to elaborate systems for their more efficacious use in breeding were discussed in this review. It was concluded that the application of one of these types of sterility, (ps 2) in practice, although in a limited number of countries, showed the functional male sterility in tomato was a potential not to be underestimated in developing approaches that aimed at reducting the time and cost associated with hybrid seed production.  相似文献   

5.
Producing hybrid seed requires an efficient pollination control system to prevent unwanted self-pollination. For further breeding, it would be advantageous to restore pollen fertility in the hybrids. In this work we demonstrate the use of tapetum-specific expression of a stilbene synthase (sts) transgene to induce pollen sterility in tobacco as has been shown previously. The sts-coding region was flanked by loxP recognition sites for Cre-recombinase. From 10 T0-plants obtained, five proved to be male-sterile. They had smaller flowers with shorter stamina, but the vegetative phenotype was just as in the wild-type. Crossing male-sterile sts-plants with tobacco lines expressing the cre recombinase transgene resulted in site-specific recombination in the hybrids. GUS activity caused by fusion of the tap1-promoter with a promoterless gusA coding region indicated recombination events already in early stages of flower bud development. In all plants which had contained single or double sts-copies before crossing, these were excised, and pollen fertility was fully restored. The phenotype of these restored plants was as in wild-type controls. Contrary, from male sterile plants containing multiple copies of the sts-gene, not all copies were removed, and pollen sterility was maintained.  相似文献   

6.
Prevention of the flowering of a tree,silver birch   总被引:3,自引:1,他引:2  
Genetic modification of trees presents great advantages but it is hampered by the possible spread of introduced genes to native populations. However, the spread would be prevented if the modified trees would be sterile. We have previously shown that the induction of sterility by the prevention of flowering is possible in tobacco and Arabidopsis by introducing a gene construct composed of the ribonuclease gene BARNASE ligated to the flower-specific promoter of the birch gene BpMADS1. In the present study, we test this gene construct in silver birch (Betula pendula Roth). When this gene construct was introduced into very early-flowering birch clones, 81 kanamycin resistant lines were obtained. In 38 lines, the vegetative development was disturbed, e.g., the leaves were small and the plants were short and bushy or the growth of plants was weak. More importantly, in 7 other lines no male inflorescences formed or they aborted early. If male inflorescences were formed, they did not contain any stamens. The initial growth of these lines was similar to the non-transgenic control lines. Later, however, the growth of the non-flowering lines differed from that of the controls in showing some dichotomic branching and a reduced number of branches. Preliminary results showed that the gene construct can prevent the development of female inflorescences as well. The results show clearly that BpMADS1::BARNASE can prevent the flowering in a tree but the prevention of flowering may cause some side effects. Studies with ordinary birch clones will show whether the side effects are a property of the early flowering clones or all birches.  相似文献   

7.
Trait improvement of turfgrass through genetic engineering is important to the turfgrass industry and the environment. However, the possible transgene escape to wild and non-transformed species raises ecological and commercial concerns. Male sterility provides an effective way for interrupting gene flow. We have designed and synthesized two chimeric gene constructs consisting of a rice tapetum-specific promoter (TAP) fused to either a ribonuclease gene barnase, or the antisense of a rice tapetum-specific gene rts. Both constructs were linked to the bar gene for selection by resistance to the herbicide glufosinate. Agrobacterium-mediated transformation of creeping bentgrass (cv Penn A-4) with both constructs resulted in herbicide-resistant transgenic plants that were also 100% pollen sterile. Mendelian segregation of herbicide resistance and male sterility was observed in T1 progeny derived from crosses with wild-type plants. Controlled self- and cross-pollination studies showed no gene transfer to non-transgenic plants from male-sterile transgenic plants. Thus, male sterility can serve as an important tool to control transgene escape in bentgrass, facilitating the application of genetic engineering in producing environmentally responsible turfgrass with enhanced traits. It also provides a tool to control gene flow in other perennial species using transgenic technology.  相似文献   

8.
9.
Summary In many higher plants, nucleo-cytoplasmic interactions lead to pollen abortion. In Vicia faba, cytoplasmic male sterility is unstable as the cytoplasm appears to shift from a sterile to a fertile state. In this report, five flower phenotypes are defined but the study is focussed on the progenies obtained from intermediate, semi-sterile plants with the same homozygous nuclear constitution during five successive generations. The results could be interpreted by quantitative modifications of at least four different kinds of cytoplasmic determinants.  相似文献   

10.
The Arabidopsis mutant defective in anther dehiscence1 (dad1) shows defects in anther dehiscence, pollen maturation, and flower opening. The defects were rescued by the exogenous application of jasmonic acid (JA) or linolenic acid, which is consistent with the reduced accumulation of JA in the dad1 flower buds. We identified the DAD1 gene by T-DNA tagging, which is characteristic to a putative N-terminal transit peptide and a conserved motif found in lipase active sites. DAD1 protein expressed in Escherichia coli hydrolyzed phospholipids in an sn-1–specific manner, and DAD1–green fluorescent protein fusion protein expressed in leaf epidermal cells localized predominantly in chloroplasts. These results indicate that the DAD1 protein is a chloroplastic phospholipase A1 that catalyzes the initial step of JA biosynthesis. DAD1 promoter::β-glucuronidase analysis revealed that the expression of DAD1 is restricted in the stamen filaments. A model is presented in which JA synthesized in the filaments regulates the water transport in stamens and petals.  相似文献   

11.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   

12.
In the present paper are summarized our results on obtaining tobacco male sterile forms through interspecific hybridization. The wild species Nicotiana velutina, N. benthamiana, N. maritima, N. paniculata were used as cytoplasm donors and N. tabacum as the donor of the nucleus. Completely sterile hybrids from these combinations were obtained whose sterility was overcome through the use of tissue culture. Stem parenchyma grown in vitro on MS medium was used for inducing callus, and for organogenesis and rooting. The regenerants obtained were mixoploid. Male sterile plants were obtained in BC1P2 progenies from the combinations between N. velutina × N. tabacum, N. benthamiana × N. tabacum and in R2 progenies from N. maritima × N. tabacum and N. paniculata × N. tabacum. The observed male sterility was preserved in BC1P2-BC7P2 progenies and was identified as cytoplasmic male sterility (CMS) because it was inherited only throuth the female parent.  相似文献   

13.
The donor-recipient protoplast fusion method was used to produce cybrid plants and to transfer cytoplasmic male sterility (CMS) from two cytoplasmic male-sterile lines MTC-5A and MTC-9A into a fertile japonica cultivar, Sasanishiki. The CMS was expressed in the cybrid plants and was stably transmitted to their progenies. Only cytoplasmic traits of the male-sterile lines, especially the mitochondrial DNAs, were introduced into the cells of the fertile rice cultivar. More than 80% of the cybrid plants did not set any seeds upon selfing. Sterile cybrid plants set seeds only when they were fertilized with normal pollen by hand and yielded only sterile progenies. This maternally inherited sterility of the cybrid plants showed that they were characterized by CMS. The CMS of cybrid plants could be restored completely by crossing with MTC-10R which had the single dominant gene Rf-1 for restoring fertility. These results indicated that CMS was caused by the mitochondrial genome introduced through protoplast fusion. The introduced CMS was stably transmitted to their progenies during at least eight backcross generations. These results demonstrate that cybrids generated by the donor-recipient protoplast fusion technique can be used in hybrid rice breeding for the creation of new cytoplasmic male-sterile rice lines.  相似文献   

14.
Summary Male sterile plants appeared in the progeny of three fertile plants obtained after one cycle of protoplast culture from a fertile botanical line and two androgenetic lines ofNicotiana sylvestris. These plants showed the same foliar and floral abnormalities as the cytoplasmic male sterile (cms) mitochondrial variants obtained after two cycles of culture. We show that male sterility in these plants is controlled by three independent nuclear genes,ms1, ms2 andms3, while no changes can be seen in the mitochondrial genome. However, differences were found between thein organello mitochondrial protein synthesis patterns of male sterile and parent plants. Two reproducible changes were observed: the presence of a new 20 kDa polypeptide and the absence of a 40 kDa one. Such variations were described previously in mitochondrial protein synthesis patterns of the cms lines. Fertile hybrids of male sterile plants showed normal synthesis patterns. The male sterile plants are thus mutated in nuclear genes involved in changes observed in mitochondrial protein synthesis patterns.  相似文献   

15.
Summary A light sensitive mutant was used as a recipient in the transfer of chloroplasts from a wildtype donor. Gamma irradiated (lethal dose) mesophyll protoplasts of Nicotiana gossei were fused with mesophyll protoplasts of a N. plumbaginifolia line carrying light sensitive plastids from a N. tabacum mutant. After fusion, colonies containing wild-type plastids from the cytoplasm donor were selected by their green colour. Most of the regenerated plants had N. plumbaginifolia morphology, but were a normal green in colour. The presence of donor-type plastids was confirmed by the restriction pattern of chloroplast DNA in each plant analysed. These cybrids were fully male sterile with an altered flower morphology typical of certain types of alloplasmic male sterility in Nicotiana. The use of the cytoplasmic light sensitive recipient proved to be suitable for effective interspecific transfer of wild-type chloroplasts. The recombinant-type mitochondrial DNA restriction patterns and the male sterility of the cybrids indicated the co-transfer of chloroplast and mitochondrial traits. On leave from: Department of Genetics, Section of Biosciences, Martin Luther University, Domplatz 1, DDR-4020 Halle/ S., German Democratic Republic  相似文献   

16.
Summary Somatic hybrid/cybrid plants were obtained by microfusion of defined protoplast pairs from malefertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile (cms), streptomycin-sensitive N. tabacum cms (N. bigelovii) after microculture of recovered fusants. Genetic and molecular characterization of the organelle composition of 30 somatic hybrid/cybrid plants was performed. The fate of chloroplasts was assessed by an in vivo assay for streptomycin resistance/ sensitivity using leaf explants (R0 generation and R1 seedlings). For the analysis of the mitochondrial (mt) DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA, with three DNA probes of N. sylvestris mitochondrial origin. In addition, detailed histological and scanning electron microscopy studies on flower ontogeny were performed for representative somatic hybrids/cybrids showing interesting flower morphology. The present study demonstrates that electrofusion of individually selected pairs of protoplasts (microfusion) can be used for the controlled somatic hybridization of higher plants.Abbreviations ac alternate current - BAP benzyl aminopurine - cms cytoplasmic male sterile - dc direct current - NAA naphthalenacetic acid - SEM scanning electron microscopy  相似文献   

17.
18.
19.
Summary Interspecific hybrids and amphidiploids of Nicotiana knightiana Goodspeed (n= 12)x N. umbratica Burbidge (n = 23) resembled either parent in some characters and were intermediate in other characters. The F1 hybrids (2n = 35) showed mostly univalents during meiosis, while the amphidiploids (2n = 70) formed bivalents almost regularly. The former were completely sterile and the latter fully male fertile but predominantly female sterile. This female sterility was due to disintegration of the embryo sacs leading to collapsed ovules. The few fertile ovules, however, showed normal development of embryo sac and embryo. The occurrence of fertile and sterile ovules was believed to be due to segregation of the genes governing sterility.  相似文献   

20.
The incompatibility between the wild species N. africana Merxm. and the cultivated species N. tabacum has been overcome by in vitro techniques. Underdeveloped F0 seeds, placed on MS medium with supplements, produced plants which upon reaching the stage of anthesis proved to be completely sterile. Female sterility of F1 hybrids was overcome by applying tissue culture methods. Explants of stem parenchyma were grown in vitro. In every passage investigations were made of their callus production, organogenesis and cell polyploidization. The regenerants showed a great diversity in their morphological and cytological characters. Pollination of the R1 plants (N. africana × N. tabacum) with N. tabacum produced normally seeded capsules. BC1 plants were male sterile. The male sterility of the first backcross generation was preserved in BC2 and BC3, proving its cytoplasmic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号