首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A nonlinear, coupled biphasic-mass transport model that includes transvascular fluid exchange is proposed for flow-controlled infusions in brain tissue. The model accounts for geometric and material nonlinearities, a hydraulic conductivity dependent on deformation, and transvascular fluid exchange according to Starling’s law. The governing equations were implemented in a custom-written code assuming spherical symmetry and using an updated Lagrangian finite-element algorithm. Results of the model indicate that, using normal physiological values of vascular permeability, transvascular fluid exchange has negligible effects on tissue deformation, fluid pressure, and transport of the infused agent. As vascular permeability may be increased artificially through methods such as administering nitric oxide, a parametric study was conducted to determine how increased vascular permeability affects flow-controlled infusion. Increased vascular permeability reduced both tissue deformation and fluid pressure, possibly reducing damage to tissue adjacent to the infusion catheter. Furthermore, the loss of fluid to the vasculature resulted in a significantly increased interstitial fluid concentration but a modestly increased tissue concentration. From a clinical point of view, this increase in concentration could be beneficial if limited to levels below which toxicity would not occur. However, the modestly increased tissue concentration may make the increase in interstitial fluid concentration difficult to assess in vivo using co-infused radiolabeled agents.  相似文献   

2.
The discovery of the enhanced permeability and retention (EPR) effect has resulted in the development of nanomedicines, including liposome-based formulations of drugs, as cancer therapies. The use of liposomes has resulted in substantial increases in accumulation of drugs in solid tumors; yet, significant improvements in therapeutic efficacy have yet to be achieved. Imaging of the tumor accumulation of liposomes has revealed that this poor or variable performance is in part due to heterogeneous inter-subject and intra-tumoral liposome accumulation, which occurs as a result of an abnormal transport microenvironment. A mathematical model that relates liposome accumulation to the underlying transport properties in solid tumors could provide insight into inter and intra-tumoral variations in the EPR effect. In this paper, we present a theoretical framework to describe liposome transport in solid tumors. The mathematical model is based on biophysical transport equations that describe pressure driven fluid flow across blood vessels and through the tumor interstitium. The model was validated by direct comparison with computed tomography measurements of tumor accumulation of liposomes in three preclinical tumor models. The mathematical model was fit to liposome accumulation curves producing predictions of transport parameters that reflect the tumor microenvironment. Notably, all fits had a high coefficient of determination and predictions of interstitial fluid pressure agreed with previously published independent measurements made in the same tumor type. Furthermore, it was demonstrated that the model attributed inter-subject heterogeneity in liposome accumulation to variations in peak interstitial fluid pressure. These findings highlight the relationship between transvascular and interstitial flow dynamics and variations in the EPR effect. In conclusion, we have presented a theoretical framework that predicts inter-subject and intra-tumoral variations in the EPR effect based on fundamental properties of the tumor microenvironment and forms the basis for transport modeling of liposome drug delivery.  相似文献   

3.
The coupling of intravascular and interstitial flow is a distinct feature of tumor microcirculation, due to high vessel permeability, low osmotic pressure gradient and absence of functional lymphatic system inside tumors. We have previously studied the tumor microcirculation by using a 2D coupled model. In this paper, we extend it to a 3D case with some new considerations, to investigate tumor blood perfusion on a more realist microvasculature, and the effects of vascular normalization by anti-angiogenic therapy on tumor microenvironment.The model predict the abnormal tumor microcirculation and the resultant hostile microenvironment: (1) in the intra-tumoral vessels, blood flows slowly with almost constant pressure values, haematocrit is much lower which contributes to hypoxia and necrosis formation of the tumor centre; (2) the total transvascular flux is at the same order of magnitude as intravascular flux, the intravasation appears inside of the tumor, the ratio of the total amount of intravasation flux to extravasation flux is about 16% for the present model; (3) the interstitial pressure is uniformly high throughout the tumor and drops precipitously at the periphery, which leads to an extremely slow interstitial flow inside the tumor, and a rapidly rising convective flow oozing out from the tumor margin into the surrounding normal tissue. The investigation of the sensitivity of flows to changes in transport properties of vessels and interstitium as well as the vascular density of the vasculature, gains an insight into how normalization of tumor microenvironment by anti-angiogenic therapies influences the blood perfusion.  相似文献   

4.
In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.  相似文献   

5.
It is well known that microcracks act as a stimulus for bone remodelling, initiating resorption by osteoclasts and new bone formation by osteoblasts. Moreover, microcracks are likely to alter the fluid flow and convective transport through the bone tissue. This paper proposes a quantitative evaluation of the strain-induced interstitial fluid velocities developing in osteons in presence of a microcrack in the interstitial bone tissue. Based on Biot theory in the low-frequency range, a poroelastic model is carried out to study the hydro-mechanical behaviour of cracked osteonal tissue. The finite element results show that the presence of a microcrack in the interstitial osteonal tissue may drastically reduce the fluid velocity inside the neighbouring osteons. This fluid inactive zone inside osteons can cover up to 10% of their surface. Consequently, the fluid environment of bone mechano-sensitive cells is locally modified.  相似文献   

6.
PDGFs and their cognate tyrosine kinase alpha- and beta-receptors are involved in multiple tumor-associated processes including autocrine growth stimulation of tumor cells, stimulation of tumor angiogenesis and recruitment and regulation of tumor fibroblasts. The recent development of clinically useful PDGF antagonists, like STI571/Glivec, has increased the interest in PDGF receptors as cancer drug targets. Autocrine PDGF receptor signaling occurs in certain malignancies characterized by mutational activation of PDGF or PDGF receptors, for instance, dermatofibrosaracoma protuberans, gastrointestinal stromal tumors, and hypereosinophilic syndrome. The roles of PDGF in regulation of tumor angiogenesis and tumor fibroblasts are more general, and probably occur in most common solid tumors. Concerning tumor angiogenesis recent studies have predominantly focused on the importance of PDGF receptor signaling for tumor pericyte recruitment. PDGF receptors in the tumor stroma have also attracted attention as interesting drug targets because of their function as regulators of tumor interstitial fluid pressure, tumor transvascular transport and tumor drug uptake. In summary, the improved understanding of the role of PDGF signaling in tumor biology, and the introduction of PDGF antagonists, has set the stage for a continued development of PDGF antagonists as novel cancer drugs.  相似文献   

7.
Soltani M  Chen P 《PloS one》2011,6(6):e20344
A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges.  相似文献   

8.
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents.  相似文献   

9.
We have developed a spatially distributed mathematical model of angiogenic tumor growth in tissue with account of interstitial fluid dynamics and bevacizumab monotherapy. In this model the process of neovascularization is initiated by tumor cells in a state of metabolic stress, vascular endothelial growth factor (VEGF) being its main mediator. The model takes into consideration the convection flows arising in dense tissue due to active proliferation and migration of tumor cells as well as interstitial fluid inflow from blood vascular system, its outflow through lymphatic system and redistribution in the area of tumor growth. The work considers the diffusive approximation of interstitial fluid dynamics in tumor and normal tissue. Numerical study of the model showed that in absence of therapy a peritumoral edema is formed due to the increase of interstitial fluid inflow from angiogenic capillaries. In the case of rapid interstitial fluid outflow through lymphatic system and its fast transport from necrotic zone to normal tissue the regimes of full growth stop are observed in case of low-invasive tumor. Under bevacizumab monotherapy the peritumoral edema vanishes and low-invasive tumor may not only decelerate its growth, but also start shrinking for a large range of parameters.  相似文献   

10.
Access to interstitial fluid is of fundamental importance to understand tumor transcapillary fluid balance, including the distribution of probes and therapeutic agents. Tumors were induced by gavage of 9,10-dimethyl-1,2-benzanthracene to rats, and fluid was isolated after anesthesia by exposing tissue to consecutive centrifugations from 27 to 6,800 g. The observed (51)Cr-EDTA (extracellular tracer) tissue fluid-to-plasma ratio obtained from whole tumor or from superficial tumor tissue by centrifugation at 27-424 g was not significantly different from 1.0 (0.92-0.99), suggesting an extracellular origin only. However, fluid collected from excised central tumor parts had a significantly lower ratio (0.66-0.77) for all imposed G forces, suggesting dilution by fluid deriving from a space unavailable for (51)Cr-EDTA. The colloid osmotic pressure in tumor fluid was generally higher than in fluid isolated from the subcutis, attributable to less selective capillaries and impaired lymphatic drainage in tumors. HPLC analysis of tumor fluid showed that low-molecular-weight macromolecules not present in arterial plasma were present in tumor fluid obtained by centrifugation and in venous blood draining the tumor, most likely representing proteins derived from tumor cells. We conclude that low-speed centrifugation may be a simple and reliable method to isolate interstitial fluid from tumors.  相似文献   

11.
Fluid in interstitial spaces accounts for ~20% of an adult body weight and flows diffusively for a short range. Does it circulate around the body like vascular circulations? This bold conjecture has been debated for decades. As a conventional physiological concept, interstitial space is a micron‐sized space between cells and vasculature. Fluid in interstitial spaces is thought to be entrapped within interstitial matrix. However, our serial data have further defined a second space in interstitium that is a nanosized interfacial transport zone on a solid surface. Within this fine space, fluid along a solid fibre can be transported under a driving power and identically, interstitial fluid transport can be visualized by tracking the oriented fibres. Since 2006, our data from volunteers and cadavers have revealed a long‐distance extravascular pathway for interstitial fluid flow, comprising at least four types of anatomic distributions. The framework of each extravascular pathway contains the longitudinally assembled and oriented fibres, working as a fibrorail for fluid flow. Interestingly, our data showed that the movement of fluid in a fibrous pathway is in response to a dynamic driving source and named as dynamotaxis. By analysis of previous studies and our experimental results, a hypothesis of interstitial fluid circulatory system is proposed.  相似文献   

12.
A primary mechanism of solute transport in articular cartilage is believed to occur through passive diffusion across the articular surface, but cyclical loading has been shown experimentally to enhance the transport of large solutes. The objective of this study is to examine the effect of dynamic loading within a theoretical context, and to investigate the circumstances under which convective transport induced by dynamic loading might supplement diffusive transport. The theory of incompressible mixtures was used to model the tissue (gel) as a mixture of a gel solid matrix (extracellular matrix/scaffold), and two fluid phases (interstitial fluid solvent and neutral solute), to solve the problem of solute transport through the lateral surface of a cylindrical sample loaded dynamically in unconfined compression with frictionless impermeable platens in a bathing solution containing an excess of solute. The resulting equations are governed by nondimensional parameters, the most significant of which are the ratio of the diffusive velocity of the interstitial fluid in the gel to the solute diffusivity in the gel (Rg), the ratio of actual to ideal solute diffusive velocities inside the gel (Rd), the ratio of loading frequency to the characteristic frequency of the gel (f), and the compressive strain amplitude (epsilon 0). Results show that when Rg > 1, Rd < 1, and f > 1, dynamic loading can significantly enhance solute transport into the gel, and that this effect is enhanced as epsilon 0 increases. Based on representative material properties of cartilage and agarose gels, and diffusivities of various solutes in these gels, it is found that the ranges Rg > 1, Rd < 1, correspond to large solutes, whereas f > 1 is in the range of physiological loading frequencies. These theoretical predictions are thus in agreement with the limited experimental data available in the literature. The results of this study apply to any porous hydrated tissue or material, and it is therefore plausible to hypothesize that dynamic loading may serve to enhance solute transport in a variety of physiological processes.  相似文献   

13.
The mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure.  相似文献   

14.
Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient.  相似文献   

15.
Convective fluid motion through artery walls aids in the transvascular transport of macromolecules. Although many measurements of convective filtration have been reported, they were all obtained under constant transmural pressure. However, arterial pressure in vivo is pulsatile. Therefore, experiments were designed to compare filtration under steady and pulsatile pressure conditions. Rabbit carotid arteries were cannulated and excised from male New Zealand White rabbits anesthetized with pentobarbitol sodium (30 mg/kg i.v. administered). Hydraulic conductance was measured in cannulated excised rabbit carotid arteries at steady pressure. Next, pulsatile pressure trains were applied within the same vessels, and, simultaneously, arterial distension was monitored using Optical coherence tomography (OCT). For each pulse train, the volume of fluid lost through filtration was measured (subtracting volume change due to residual distension) and compared with that predicted from steady pressure measurements. At 60- and 80-mmHg baseline pressures, the experimental filtration volumes were significantly increased compared with those predicted for steady pressure (P < 0.05). OCT demonstrated that the excess fluid volume loss was significantly greater than the volume that would be lost through residual distension (P < 0.05). After 30 s, the magnitude of the excess of fluid loss was reduced. These results suggest that sudden onset of pulsatile pressure may cause changes in arterial interstitial hydration.  相似文献   

16.
ABSTRACT: Tumor shape and size effect on drug delivery to solid tumors are studied, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for predefined tumor geometries. The governing equations are solved using a numerical method, the element-based finite volume method. Interstitial fluid pressure and velocity are used to show the details of drug delivery in a solid tumor, under an assumption that drug particles flow with the interstitial fluid. Drug delivery problems have been most extensively researched in spherical tumors, which have been the simplest to examine with the analytical methods. With our numerical method, however, more complex shapes of the tumor can be studied. The numerical model of fluid flow in solid tumors previously introduced by our group is further developed to incorporate and investigate non-spherical tumors such as prolate and oblate ones. Also the effects of the surface area per unit volume of the tissue, vascular and interstitial hydraulic conductivity on drug delivery are investigated.  相似文献   

17.
A squeeze-film lubrication model of the human ankle joint in standing that takes into account the fluid transport across the articular surface is presented. Articular cartilage is a biphasic mixture of the ideal interstitial fluid and an elastic permeable isotropic homogeneous intrinsically incompressible matrix. The simple homogeneous model for articular cartilage models the case of early osteoarthritis, when the intact superficial zone of the normal articular cartilage, much stiffer in tension than the bulk material, has been already disrupted or worn out. The calculations indicate for this case that in normal approach motion the lubricating fluid film is quickly depleted and turned into a synovial gel film that is supposed to serve as a boundary lubricant if sliding motion follows  相似文献   

18.
The synovial intercellular space is the path by which water, nutrients, cytokines, and macromolecules enter and leave the joint cavity. In this study two structural factors influencing synovial permeability were quantified by morphometry (Delesse's principle) of synovial electronmicrographs (rabbit knee), namely interstitial volume fraction Vv.1 and the fraction of the interstitium obstructed by collagen fibrils. Mean Vv.1 across the full thickness was 0.66 +/- 0.03 SEM (n = 11); but Vv.1 actually varied systematically with depth normal to the surface, increasing nonlinearly from 0.40 +/- 0.04 (n = 5 joints) near the free surface to 0.92 +/- 0.02 near the subsynovial interface. Tending to offset this increase in transport space, however, the space "blocked" by collagen fibrils also increased nonlinearly with depth. Bundles of collagen fibrils occupied 13.6 +/- 2.4% of interstitial volume close to the free surface but 49 +/- 4.8% near the subsynovial surface (full-thickness average, 40.5 +/- 3.5%), with fibrils accounting for 48.6-57.1% of the bundle space. Because of the two counteracting compositional gradients, the space available for fibril-excluded transport (hydraulic flow and macromolecular diffusion) was relatively constant > 4 microns below the surface but constricted at the synovium-cavity interface. The space available to extracellular polymers was only 51-53% of tissue volume, raising their effective concentration and hence the lining's resistance to flow and ability to confine the synovial fluid.  相似文献   

19.

Background

The computational methods provide condition for investigation related to the process of drug delivery, such as convection and diffusion of drug in extracellular matrices, drug extravasation from microvessels or to lymphatic vessels. The information of this process clarifies the mechanisms of drug delivery from the injection site to absorption by a solid tumor. In this study, an advanced numerical method is used to solve fluid flow and solute transport equations simultaneously to investigate the effect of tumor shape and size on drug delivery to solid tumor.

Methods

The advanced mathematical model used in our previous work is further developed by adding solute transport equation to the governing equations. After applying appropriate boundary and initial conditions on tumor and surrounding tissue geometry, the element-based finite volume method is used for solving governing equations of drug delivery in solid tumor. Also, the effects of size and shape of tumor and some of tissue transport parameters such as effective pressure and hydraulic conductivity on interstitial fluid flow and drug delivery are investigated.

Results

Sensitivity analysis shows that drug delivery in prolate shape is significantly better than other tumor shapes. Considering size effect, increasing tumor size decreases drug concentration in interstitial fluid. This study shows that dependency of drug concentration in interstitial fluid to osmotic and intravascular pressure is negligible.

Conclusions

This study shows that among diffusion and convection mechanisms of drug transport, diffusion is dominant in most different tumor shapes and sizes. In tumors in which the convection has considerable effect, the drug concentration is larger than that of other tumors at the same time post injection.
  相似文献   

20.
The absolute concentration of albumin was measured in the interstitial fluid of subcutaneous adipose tissue and skeletal muscle in six healthy volunteers by combining the method of open-flow microperfusion and the no-net-flux calibration technique. By use of open-flow microperfusion, four macroscopically perforated double lumen catheters were inserted into the tissue regions of interest and constantly perfused. Across the macroscopic perforations of the catheters interstitial fluid was partially recovered in the perfusion fluid. Catheters were perfused with five solutions, each containing different concentrations of albumin. Absolute interstitial albumin concentrations were calculated by applying linear regression analysis to perfusate vs. sampled albumin concentration (no-net-flux calibration technique). Interstitial albumin concentrations were significantly lower (P < 0.0001) in adipose tissue (7.36 g/l; r = 0.99, P < 0.0003; range: 4.3-10.7 g/l) and in skeletal muscle (13.25 g/l; r = 0.99, P < 0.0012; range: 9.7 to 15.7 g/l) compared with the serum concentration (48.9 +/- 0.7 g/l, mean +/- SE, n = 6; range: 46.4-50.4 g/l). Furthermore, interstitial albumin concentrations were significantly higher in skeletal muscle compared with adipose tissue (P < 0.01). The study indicates that open-flow microperfusion allows stable sampling of macromolecules from the interstitial space of peripheral tissue compartments. Moreover, the present data report for the first time in healthy humans in vivo the true albumin concentrations of interstitial fluid of adipose tissue and skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号