首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the termini of the DNA of Epstein-Barr virus.   总被引:39,自引:0,他引:39  
C R Kintner  B Sugden 《Cell》1979,17(3):661-671
We have studied the DNA of Epstein-Barr virus (EBV) isolated from the B95-8 strain of that virus (Miller and Lipman, 1973). When EBV DNA is partially digested with lambda-exonuclease and allowed to reanneal, up to 50% of the full-length molecules circularize. The arrangements of nucleotide sequences containing the terminal repeats identified in this circularization experiment have been determined. Those fragments of viral DNA generated by digestion with restriction endonucleases which are terminal and contain the terminal repeats have been identified by their sensitivity to digestion of full-length DNA by lambda-exonuclease and by virtue of their being partially homologous to one another. The population of DNA molecules in the B95-8 strain of EBV was found to be nonuniform. The nonuniformity results from different molecules having different numbers of a 0.37 megadalton terminal repeat at each end. About 70% of molecules have four terminal repeats at one end, while four equal classes, each comprising approximately 25% of the population, have one, two, three or four repeats at the other end. The arrangements of nucleotide sequences identified as being terminal in virion DNA were studied in the intracellular circular viral DNA of cells transformed by a single particle on EBV. All fragments produced by digestion with endonucleases and scored as being terminal in virion DNA were absent from intracellular circular DNA. An additional fragment was identified in the digests of intracellular DNA of each transformed clone. The molecular weights of the new fragments equal the sum of the molecular weights of two terminal fragments which are joined upon intracellular circularization of viral DNA.  相似文献   

2.
We wished to learn whether the genomes of strains of EMB isolated from patients with infectious mononucleosis are consistently distinguishable from those of strains from Burkitt's lymphoma. The genome of a new transforming strains (FF41) of EBV isolated from saliva of a patient with uncomplicated infectious mononucleosis was compared with the DNA of B95-8, the only other available virus from mononucleosis. It had been found previously that B95-8 has a deletion of about 8 Md in the region of the physical map represented by the Eco RI C, Hind III D, and Bam HI I fragments. The W91 and HR-1 isolates for Burkitt's lymphoma are not deleted in this region and it had been proposed that additional information was characteristic of EBV isolates from Burkitt's lymphoma. By means of restriction enzyme analysis, blot hybridization experiments and molecular cloning of FF41 DNA we demonstrate that the deletion found in B95-8 is not present in the new mononucleosis isolate. The FF41 genome contains an extra 8 Md of DNA, represented by Bam HI fragments B', W' and I', which are located in a larger Eco RI C fragment. Thus the genome of this salivary isolate contains DNA that had previously been regarded to be unique to strains from Burkitt's lymphoma. It is therefore unlikely that major insertions or deletions in the EBV genome account for differences in disease manifestation following EBV infection.  相似文献   

3.
We used cloned BamHI fragments from Epstein-Barr virus strain B95-8 [EBV(B95-8)]DNA to obtain detailed restriction maps of the region of the genome adjacent to the large internal repeat cluster. These maps together with the results of hybridization experiments using a 3.1-kilobase repeat probe defined more precisely the location of the injection between the internal repeat cluster and the flanking unique-sequence DNA. On one side (UL), the repeat sequences extended 600 +/- 80 base pairs (bp) into BamHI-Y; on the other side (US), they extended 1,300 +/- 200 bp into BamHI-C. Therefore, EBV(B95-8) DNA contained a nonintegral number of 3.1-kilobase repeat units, namely, 12.6 copies. The mapping studies also revealed a second series of internal tandem repetitions in EBV(B95-8) DNA located within the BamHI-H fragment. This cluster comprised 11 copies of a 135-bp repeat unit which contained a single site for the NotI restriction endonuclease. Hybridization to these cloned EBV(B95-8) fragments using total EBV(HR-1) DNA as probe indicated that the deletion in EBV(HR-1) removed all 3,000 bp of unique-sequence DNA which lay between the large 3.1-kilobase and the small 135-bp repeat clusters. Thus, the deletion which destroyed the transforming ability in the EBV(HR-1) virus was bounded on either side by tandem repetitions.  相似文献   

4.
5.
Epstein-Barr virus RNA in Burkitt tumor tissue.   总被引:17,自引:0,他引:17  
T Dambaugh  F K Nkrumah  R J Biggar  E Kieff 《Cell》1979,16(2):313-322
Analysis of the viral RNA in four Burkitt tumor biopsies indicates that tumor tissue contains RNA homologous to at least 3–6% of the DNA of Epstein-Barr virus (EBV). Most of these RNA species accumulate in the polyadenylated RNA fraction of Burkitt tumor tissue. Two approaches have been used to determine the location within the EBV genome of the DNA sequences which encode stable RNA in two Burkitt tumor biopsies, F and S, which contain 6–10 copies per cell of at least 80% of the EBV genome. With the first approach, 32P-EBV DNA homologous to polyadenylated or nonpolyadenylated RNAs from the F, S or R tumors was hybridized to blots of fragments of EBV DNA. With the second approach, polyadenylated or nonpolyadenylated RNAs from the F or S tumors were hybridized to separated, labeled fragments of EBV DNA in solution. The results indicate that first, most of the viral RNA in Burkitt tumor tissue is encoded by approximately 20% of the Hsu I D fragment, 20% of the Eco RI A/Hsu I A double-cut fragment and 3% of the Hsu I B fragment of EBV DNA; second, an abundant RNA species in tumor tissue is homologous to the “additional DNA” present in the W91 and Jijoye/HR-I Burkitt tumor isolates of EBV and absent in the B95-8 virus, an isolate of EBV from outside the Burkitt endemic region; and third, there is little or no homology to other regions of the EBV genome.  相似文献   

6.
S Yano  H E Faber  Y S Lee  M Nonoyama 《Gene》1981,13(2):203-208
Restriction fragments of Epstein-Barr virus (EBV; B95-8) DNA were cloned in the Tc gene of pBR322 (HindIII-F, -G, -I, -J, -K, -L, and -M) and in Charon3A (EcoRI-GI and -G2). Altogether these cloned fragments covered 39% of the entire viral genome. The cloned EcoRI-G2 fragment of EBV (B95-8) DNA was shown to contain, in addition to HindIII-J, two more HindIII-fragments : HindIII-M, which had not been located on the linkage map of the viral genome (Given and Kieff, 1978) and HindIII-N, which had been unrecognized up to now. The utility of this cloning method is discussed in regard to the detailed mapping of a viral genome and large-scale production of the viral DNA.  相似文献   

7.
Epstein-Barr virus (EBV) originating from Burkitt's lymphoma (P3HR-1 and CC34-5), nasopharyngeal carcinoma (M-ABA), transfusion mononucleosis (B95-8), and a patient with acute myeloblastic leukemia (QIMR-WIL) was isolated from virus-carrying lymphoid cell lines after induction with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Viral DNA was analyzed by partial denaturation mapping and by use of the restriction endonucleases EcoRI, HindIII, and SalI and separation of fragments in 0.4% agarose. By using the restriction enzyme data of B95-8 (EBV) and W91 (EBV) obtained by Given and Kieff (D. Given and E. Kieff, J. Virol. 28:524-542, 1978), maps were established for the other virus strains. Comigrating fragments were assumed to be identical or closely related among the different strains. Fragments of different strains migrating differently were isolated, purified, radioactively labeled, and mapped by hybridization against blots of separated viral fragments. The results were as follows. (i) All strains studied were closely related. (ii) The number of internal repeats was variable among and within viral strains. (iii) B95-8 (EBV) was the only strain with a large deletion of about 12,000 base pairs at the right-hand side of the molecule. At the same site, small deletions of about 400 to 500 base pairs were observed in P3HR-1 (EBV) and M-ABA (EBV) DNA. (iv) P3HR-1 (EBV), the only nontransforming EBV strain, had a deletion of about 3,000 to 4,000 base pairs in the long unique region adjacent to the internal repeats carrying a HindIII site. (v) Small inserted sequences of 150 to 400 base pairs were observed in M-ABA (EBV) and B95-8 (EBV) at identical sites in the middle of the long unique region. (vi) Near this site, an insertion of about 1,000 base pairs was found in P3HR-1 (EBV) DNA. (vii) The cleavage patterns of P3HR-1 virus DNA and the results of blot hybridizations with P3HR-1 virus fragments are not conclusive and point to the possibility that in addition to the normal cleavage pattern some viral sequences may be arranged differently. Even though it is possible that small differences in the genome organization may have significant biological effects, the great similarity among different EBV strains does not favor the hypothesis that disease-specific subtypes exist.  相似文献   

8.
Generation of adenovirus by transfection of plasmids   总被引:35,自引:2,他引:33       下载免费PDF全文
  相似文献   

9.
The patterns of integration of the viral genome have been analyzed in four hamster cell lines transformed by adenovirus type 12 (Ad12). It has previously been shown that in each of the cell lines HA12/7, T637, A2497-2 and A2497-3, the viral genome persists in multiple copies, and that different parts of the viral DNA are represented non-stoichiometrically (Fanning and Doerfler, 1976). All four cell lines are oncogenic when injected into hamsters.The DNA from each of the cell lines was extracted and cleaved in different experiments with restriction endonucleases Bam HI, Bgl II, Eco RI, Hind III, Hpa II or Sma I. The DNA fragments were separated on 1% agarose slab gels and transferred to nitrocellulose filters by the Southern technique. Ad12 DNA sequences were detected by hybridization to Ad12 DNA, which was 32P-labeled by nick translation, and by subsequent autoradiography. In some experiments, the 32P-labeled Eco RI restriction endonuclease fragments of Ad12 DNA were used to investigate the distribution of specific segments of the viral genome in the cellular DNA.For each cell line, a distinct and specific pattern of integrated viral DNA sequences is observed for each of the restriction endonucleases used. Moreover, viral sequences complementary to the isolated Eco RI restriction endonuclease fragments are also distributed in patterns specific for each cell line. There are striking differences in integration patterns among the four different lines; there are also similarities. Because the organization of cellular genes in virus-transformed as compared to normal cells has not yet been determined, conclusions about the existence or absence of specific integration sites for adenovirus DNA appear premature. Analysis of the integration patterns of Ad12 DNA in the four hamster lines investigated reveals that some of the viral DNA molecules are fragmented prior to or during integration. Analysis with specific restriction endonuclease fragments demonstrates that the Eco RI B, D and E fragments, comprising a contiguous segment from 0.17–0.62 fractional length units of the viral DNA, remain intact during integration in a portion of the viral DNA molecules. Although each cell line carries multiple copies of Ad12 DNA, the viral DNA sequences are concentrated in a small number of distinct size classes of fragments. This finding is compatible with, but does not prove, the notion that at least a portion of the viral DNA sequences is integrated into repetitive sequences, or else that the integrated viral sequences have been amplified after integration.In the three cell lines which were tested, the integration pattern is stable over many generations, with continuous passage-twice weekly-of cells for 6–7 months. In the three cell lines which were examined, the integration pattern is identical in a number of randomly isolated clones. Hence it can be concluded that the patterns of integration are identical among all cells in a population of a given line of transformed cells.  相似文献   

10.
Abstract A circular restriction map of the genome of the phage L ( Salmonella typhimurium ) has been constructed with five restriction endonucleases, Eca I, Eco RI, Bam HI, Bgl I, and Pst I. The Eco RI fragments of phage-L DNA were cloned into pACYC184, and the resulting recombinant plasmids pL1, pL2,…,pL7 were introduced into Salmonella typhimurium . The genes present on the fragments cloned were identified by the marker rescue experiments with the L-phage amber mutants. A physical gene map of the L genome obtained in this way was compared with that of P22.  相似文献   

11.
Overlapping, sheared DNA fragments from the B95-8 strain of Epstein-Barr virus were cloned in Charon 4A. Eleven recombinant phages plus one recombinant plasmid contained all of the sequences found in B95-8 virion DNA. Analysis of recombinant DNA molecules revealed a previously undetected site of homology to the internal repetition found in Epstein-Barr virus DNA. This site was adjacent to or at a site which was unstable when the recombinant DNA was propagated as phage DNA in procaryotic hosts.  相似文献   

12.
The arrangement of EcoRI, Hsu I, and Sal I restriction enzyme sites in the DNA of the B95-8 and W91 isolates of Epstein-Barr virus (EBV) has been determined from the size of the single-enzyme-cleaved fragments and from blot hybridizations that identify which fragments cut from the DNA with one enzyme contain nucleotide sequences in common with fragments cut from the DNA with a second enzyme. The DNA of the B95-8 isolate was the prototype for this study. The data indicate that (i) approximately 95 X 10(6) to 100 X 10(6) daltons of EBV (B95-8) DNA is in a consistent and unique sequence arrangement. (ii) Both termini are variable in length. One end of the molecule after Hsu I endonuclease cleavage consists of approximately 3,000 base pairs, with as many as 10 additional 500-base pair segments. The opposite end of the molecule after Sal I endonuclease cleavage consists of approximately 1,500 base pairs, with as many as 10 additional 500-base pair segments. (iii) The opposite ends of the molecule contain homologous sequences. The high degree of homology between the opposite ends of the molecule and the similarity in size of the "additional" 500-base pair segments suggests that there are identical repeating units at both ends of the DNA. The arrangement of restriction endonuclease fragments of the DNA of the W91 isolate of EBV is similar to that of the B95-8 isolate and differs from the latter in the presence of approximately 7 X 10(6) daltons of "extra" DNA at a single site. Thus, the size of almost all EcoRI, Hsu I, and Sal I fragments of EBV (W91) DNA is identical to that of fragments of EBV (B95-8) DNA. A single EcoRI fragment, C, of EBV (W91) DNA is approximately 7 X 10(6) daltons larger than the corresponding EcoRI fragment of EBV (B95-8) DNA. Digestion of EBV (W91) DNA with Hsu I or Sal I restriction endonucleases produces two fragments (Hsu I D1 and D2 or Sal I G2 and G3) which differ in total size by approximately 7 X 10(6) daltons from the fragments of EBV (B95-8) DNA. Furthermore, the EcoRI, Hsu I, and Sal I fragments of EBV (W91) and (B95-8) DNAs, which are of similar molecular weight, have homologous nucleotide sequences. Moreover, the W91 fragments contain only sequences from a single region of the B95-8 genome. Two lines of evidence indicate that the "extra" sequences present in W91 EcoRI fragment C are viral DNA and not cellular. (i) The molecular weight of the "enlarged" EcoRI C fragment of EBV (W91) DNA is identical to that of the EcoRI C fragment of another isolate of EBV (Jijoye), (ii) The HR-1 clone of Jijoye has previously been shown to contain DNA which is not present in the B95-8 strain but is present in the EcoRI C and Hsu I D2 and D1 fragments of EBV (W91) DNA (N. Raab-Traub, R. Pritchett, and E. Kieff, J. Virol. 27:388-398, 1978).  相似文献   

13.
A simplified procedure, based on several methods previously used to isolate circular DNA molecules from bacteria, was derived for the preparation of covalently closed circular viral DNA molecules from large quantities of lymphocytes transformed by Epstein-Barr virus. The protocol can be applied both to virus nonproducer lines and to lines containing cells activated to virus production. Sufficient amounts o highly purified viral DNA of intracellular origin were obtained from B95-8 and Raji cells to allow direct visual analysis of their sequence complexities after cleavage with EcoRI and separation of fragments by gel electrophoresis. No major differences in complexity were observed between circular DNA and linear virion DNA from B95-8 cells. The fragment patterns observed in this fashion agree well with those detected by conventional blotting and hybridization methods. The procedure can also be used as an analytical method to assay for small amounts of circular Epstein-Barr virus DNA molecules in other transformed cells. In this connection, no circular Epstein-Barr virus DNA was detected in Namalva cells.  相似文献   

14.
Mitochondrial DNA from cultured C13/B4 hamster cells was cleaved by the restriction endonucleases Hpa II, Hind III, Eco RI and Bam HI into 7, 5, 3 and 2 unique fragments, respectively. The summed molecular weights of fragments obtained from electrophoretic mobilities in agarose-ethidium bromide gels (with Hpa I-cleaved T7 DNA as standard) and electron microscopic analysis of fragment classes isolated from gels (with SV40 DNA as standard) were in good agreement with the size of 10.37 +/- 0.22 x 10(6) daltons (15,700 +/- 330 nucleotide pairs) determined for the intact circular mitochondrial genome. Cyclization of all Hind III, Eco RI and Bam HI fragments was observed. A cleavage map containing the 17 restriction sites (+/- 1% s.d.) was constructed by electrophoretic analysis of 32P-labeled single- and double-enzyme digestion products and reciprocal redigestion of isolated fragments. The 7 Hpa II sites were located in one half of the genome. The total distribution of the 17 cleavages around the genome was relatively uniform. The position of the D-loop was determined from its location and expansion on 3 overlapping restriction fragments.  相似文献   

15.
R A Robinson  D J O'Callaghan 《Cell》1983,32(2):569-578
The integration patterns of viral DNA sequences in three hamster embryo cell lines independently derived by transformation with equine herpesvirus type 1 (EHV-1) have been investigated by DNA blot hybridization analyses for the restriction enzymes Eco RI, Bgl II, Xba I and Bam HI with 32P-labeled selected DNAs from a collection of cloned EHV-1 restriction enzyme fragments as probes. These EHV-1-transformed cell lines contained subgenomic portions of the viral genome in an integrated state at multiple sites in the host genome. At least one copy of a viral DNA sequence mapping colinearly from 0.32 to 0.38 map units within the EHV-1 genome was common among these three EHV-1 transformed cell lines. The 0.32–0.38 viral DNA sequence was maintained stably even after 125 cell passages, whereas sequences from other positions in the EHV-1 genome were lost progressively during continued cell passage. The significance of the findings that these oncogenically transformed cell lines harbor a specific region of the EHV-1 genome is discussed with regard to stable maintenance of the oncogenically transformed state.  相似文献   

16.
Spiroplasma citri virus SpV1-R8A2B is a naked, rod-shaped virus with a circular, single-stranded DNA genome of 8273 bp. SpV1-related sequences were detected in the chromosomal DNA of all S. citri strains tested. Southern blot hybridization analyses revealed that several copies of most, if not all, SpV1 ORFs are present in the chromosome of S. citri strain R8A2. For further study of the integrated viral sequences, a genomic DNA library of S. citri R8A2 was constructed, and two cloned chromosomal DNA fragments containing SpV1 viral sequences were studied by comparison with the free viral genome of SpV1-R8A2B. One fragment seems to contain a full-length viral genome, while the other contains only parts of the viral genome. In both fragments, the left and right ends of viral sequences consist of 31-bp inverted repeat sequences, those which are facing each other at nucleotide 4737 in the circular viral genome. In addition, both fragments contain the SpV1-ORF3, encoding a putative transposase, immediately upstream of the right repeat. These data suggest that the SpV1-ORF3 and the repeat sequences could be parts of an IS-like element of chromosomal origin.  相似文献   

17.
Unintegrated, circular viral DNA, isolated from Prague A avian sarcoma virus (PrA-ASV)-infected quail cells (QT6), was cloned in the lambda vector lambda gtWES x lambda B. Three independent lambda-ASV recombinants were identified, and each contained a complete copy of the PrA-ASV genome. The arrangement of the ASV sequences within the recombinants was determined by restriction enzyme analysis and hybridization with labeled ASV-specific complementary DNA. One of the recombinants (lambda RPA101) resulted from cloning at the EcoRI site located within the terminally repeated sequence and therefore was virtually co-linear with PrA-ASV virion RNA. The other two recombinants (lambda RPA102 and 103) resulted from cloning at the EcoRI site located within the viral env gene. By restriction enzyme analysis and by measurement of R-loops formed between lambda RPA101 and PrA-ASV virion 35S RNA, the viral genome was estimated to be 9,100 bases in length. Genome length viral DNA purified from clones lambda RPA102 and 103 was biologically active. Transfection of chicken embryo cells with viral DNA, in the form of either circles or linear dimers, produced foci of transformed cells within 8 to 10 days. Linear DNA was much less efficient at inducing transformation. Viral DNA from the clone lambda RPA101 was unable to cause transformation; the basis for this defect is unknown.  相似文献   

18.
Incubation of the DNA of the B95-8 strain of Epstein-Barr virus [EBV (B95-8) DNA] with EcoRI, Hsu I, Sal I, or Kpn I restriction endonuclease yielded 8 to 15 fragments separable on 0.4% agarose gels and ranging in molecular weight from less than 1 to more than 30 x 10(6). Bam I and Bgl II yielded fragments smaller than 11 x 10(6). Preincubation of EBV (B95-8) DNA with lambda exonuclease resulted in a decrease in the Hsu I A and Sal I A and D fragments, indicating that these fragments are positioned near termini. The electrophoretic profiles of the fragments produced by cleavage of the DNA of the B95-8, HR-1, and Jijoye strains of EBV were each distinctive. The molecular weights of some EcoRI, Hsu I, and Sal I fragments from the DNA of the HR-1 strain of EBV [EBV (HR-1) DNA] and of EcoRI fragments of the DNA of the Jijoye strain of EBV were identical to that of fragments produced by cleavage of EBV (B95-8) DNA with the same enzyme, whereas others were unique to each strain. Some Hsu I, EcoRI, and Sal I fragments of EBV (HR-1) DNA and Kpn I fragments of EBV (B95-8) DNA were present in half-molar abundance relative to the majority of the fragments. In these instances, the sum of the molecular weights of the fragments was in excess of 10(8), the known molecular weight of EBV (HR-1) and (B95-8) DNA. The simplest interpretation of this finding is that each EBV (HR-1), and possibly also (B95-8), DNA preparation contains two populations of DNA molecules that differ in the arrangement of DNA sequences about a single point, such as has been described for herpes simplex virus DNA. Minor fragments could also be observed if there were more than one difference in primary structure of the DNAs. The data do not exclude more extensive heterogeneity in primary structure of the DNA of the HR-1 strain. However, the observation that the relative molar abundance of major and minor fragments of EBV (HR-1) DNA did not vary between preparations from cultures that had been maintained separately for several years favors the former hypothesis over the latter.  相似文献   

19.
The size of non-integrated circular Epstein-Barr virus (EBV) DNA molecules isolated from seven different human lymphoblastoid cell lines of infectious mononucleosis origin has been determined by sedimentation analysis and by direct contour length measurements on electron micrographs. Six lines had intracellular circular EBV genomes of the same size as linear virion DNA molecules. The seventh line, established with the B95-8 strain of EBV, was the only one found to have circular EBV DNA molecules significantly smaller than virion DNA. The data show that intracellular EBV DNA circles of reduced size do not generally occur in infectious mononucleosis-derived cell lines.  相似文献   

20.
The gene for the large subunit (LS) of ribulose-1,5,-bisphosphate carboxylase of Euglena gracilis Z chloroplast DNA has been mapped by heterologous hybridization with DNA restriction fragments containing internal sequences from the Zea mays and Chlamydomonas reinhardii LS genes. The Euglena LS gene which has the same polarity as the Euglena rRNA genes has been located with respect to Pst I, Pvu I, and HindIII sites within the Eco RI fragment Eco A. The region of Euglena chloroplast DNA complementary to an 887 bp internal fragment from the Chlamydomonas chloroplast LS gene is interrupted by a 0.5-1.1 kbp non-complementary sequence. This is the first chloroplast protein gene located on the Euglena genome, and the first evidence for an intervening sequence within any chloroplast protein gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号