首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of short-term energy intake and cycle exercise on oxygen consumption in response to a 1.5 MJ test meal was investigated in ten young, adult men. On the morning after a previous day's "low-energy" intake (LE regimen) of 4.5 MJ, the mean resting oxygen consumption increased by 0.7 ml X kg-1 X min-1 after the test meal (P less than 0.025). After a "high-energy" intake (HE regimen) of 18.1 MJ, the resting measurement was unchanged (+0.4 ml X kg-1 X min-1) after the meal (n.s.). These trends are the reverse of what would be expected if oxygen consumption in response to feeding is a factor in the acute control of body weight. The mean fasting oxygen consumption during cycle exercise at 56% of VO2max (constant work) for both LE and HE prior intakes was not different at 31.1 ml X kg-1 X min-1. Oxygen consumption during exercise increased after feeding by 0.5 ml X kg-1 X min-1 on the LE regimen (n.s.) and decreased by 1.2 ml X kg-1 X min-1 on the HE regimen (n.s.). These results are also the reverse of what would be expected if oxygen consumption in response to exercise is related to short-term energy intake.  相似文献   

2.
Forearm oxygen uptake during maximal forearm dynamic exercise   总被引:1,自引:0,他引:1  
This study was undertaken in an attempt to determine the maximal oxygen uptake in a small muscle group by measuring directly the oxygen expenditure of the forearm. Five healthy medical students volunteered. The subjects' maximal forearm work capacity was determined on a spring-loaded hand ergometer. Exercise was continued until exhaustion by pain or fatigue. Two weeks later intra-arterial and intravenous catheters were placed in the dominant arm. Blood samples for measurement of oxygen concentration were collected via the catheters. Forearm blood flow was measured by means of the indicator dilution technique. Oxygen uptake was determined according to the Fick principle. The forearm oxygen uptake attained at maximal work loads was a mean of 201 (SD +/- 56) mumol.min-1.100 ml-1. It was impossible at maximal exercise to discern a plateau of the oxygen uptake curve in relation to work output. It is suggested that a plateau in the oxygen uptake curve is not a useful criterion for maximal oxygen uptake in a small muscle group. Skeletal muscle may have an unused capacity for oxygen consumption even at maximal exercise intensity where muscle work cannot be continued due to muscle pain and fatigue.  相似文献   

3.
Response of plant metabolism to too little oxygen   总被引:2,自引:0,他引:2  
Oxygen can fall to low concentrations within plant tissues, either because of environmental factors that decrease the external oxygen concentration or because the movement of oxygen through the plant tissues cannot keep pace with the rate of oxygen consumption. Recent studies document that plants can decrease their oxygen consumption in response to low oxygen concentrations to avoid internal anoxia. This adaptive response involves a restriction of respiration and a concomitant decrease in ATP consumption that results from the inhibition of a wide range of biosynthetic processes. The inhibition of respiration is rapid and occurs at oxygen concentrations well above the K(m)(oxygen) of cytochrome oxidase, indicating that an oxygen-sensing system triggers a coordinated inhibition of ATP formation and consumption. In addition to this, low oxygen concentrations lead to the induction of a plant-specific and energy-conserving pathway of sucrose degradation, which decreases oxygen consumption and improves plant performance. Low oxygen concentrations also lead to long-term morphological adaptations, which allow respiration per volume tissue to be decreased and oxygen entry to be increased. Recently, advances have been made in elucidating possible oxygen-sensing systems and regulatory components that are involved in these responses.  相似文献   

4.
The effects of light on the metabolic rates of the hypogean amphipod Niphargus stygius and the epigean amphipod Gammarus fossarum were compared by measuring oxygen consumption and respiratory electron transport system (ETS) activity. They were exposed to light intensities of 720 and 4700 lx at 10°C. Oxygen consumption increased significantly in N. stygius exposed to both low and high intensities of light, but no significant increase was observed in G. fossarum at either intensity. The increase of oxygen consumption in N. stygius was significantly greater at the higher light intensity. This indicates a stress response in which exploitation of half the metabolic potential for energy production in N. stygius during exposure to high light intensity constitutes an adverse effect on its metabolism, since this species usually uses less than 25% of its total metabolic potential for standard metabolic demands.  相似文献   

5.
Oxygen consumption by eggs of European pond turtle was determined at two constant incubation temperatures of 25 and 28°C during the second half of embryogenesis. During development at both temperatures, the rate of oxygen consumption initially increased to remain constant during the last quarter of embryogenesis. The difference between the rates of oxygen consumption at these temperatures decreased during the studied period. The coefficient Q10 for the rate of oxygen consumption decreased from 9 to 1.7. At an incubation temperature of 28°C, the changes in the rate of oxygen consumption in response to a short-term temperature decrease to 25°C or increase to 30°C depended on the developmental stage and were most pronounced at the beginning of the studied period. During late embryonic and first 2.5 months of postembryonic development, the rate of oxygen consumption did not significantly differ after such temperature changes. The regulatory mechanisms formed during embryonic development are proposed to maintain the level of oxygen consumption during temperature changes.  相似文献   

6.
We measured the light response curve of photosynthetic oxygen evolution by illuminating a leaf disc in an air-tight windowed chamber. Oxygen production was measured by monitoring the quenching of luminescence of an organometallic ruthenium compound. A photodiode based chlorophyll a fluorometer was used to measure the luminescence intensity. Oxygen evolution measurements with a traditional oxygen electrode gave the same numerical values at different light intensities when the same leaf disk was tested. The quality of the measurement signal of the new method was found to be similar to that obtained with the oxygen electrode method. The new luminescence based system is more stable against electrical disturbances than an oxygen electrode, its response to oxygen pressure changes is very rapid, and the new method allows the same basic equipment to be used for chlorophyll fluorescence and oxygen measurements.  相似文献   

7.
We sought to determine the cardiovascular responses to increasing exercise intensities in postmenopausal women with different physical activity levels and hormone replacement therapy (HRT) status. Forty-four women (11 sedentary, 19 physically active, 14 master athletes; 24 not on HRT, 20 on HRT) completed treadmill exercise at 40, 60, 80, and 100% of maximal oxygen consumption. Oxygen consumption, heart rate, blood pressure, and cardiac output, determined via acetylene rebreathing, were measured at each exercise intensity. HRT did not affect cardiovascular hemodynamics. Stroke volume (SV) decreased significantly between 40 and 100% of maximal oxygen consumption in all groups, and the decrease did not differ among groups. The greater oxygen consumption of the athletes at each intensity was due to their significantly greater cardiac output, which was the result of a significantly greater SV, compared with both of the less active groups. The athletes had significantly lower total peripheral resistance at each exercise intensity than did the two less active groups. There were no consistent significant hemodynamic differences between the physically active and sedentary women. These results indicate that SV decreases in postmenopausal women as exercise intensity increases to maximum, regardless of their habitual physical activity levels or HRT status.  相似文献   

8.
Oxygen consumption by L3 and adult Ostertagia (Teladorsagia) circumcincta was examined in vitro to determine whether oxygen can be utilised in metabolism. The oxygen concentration in the abomasal fluid of sheep infected with O. circumcincta was also measured. Rates of consumption (in nmol O2/h/1000 worms) were 13+/-1 in sheathed L3, 34+/-6 in ex-sheathed L3, and 1944+/-495 in adult worms. Constant rates of consumption were maintained until media oxygen concentration dropped to between 10 and 20 microM. Consumption was inhibited 95% by cyanide in L3 and 74% in adults. Oxygen concentration in abomasal fluid varied between 10 and 30 microM in both infected and uninfected animals. During infection, oxygen concentration decreased slightly with increased abomasal pH, though the correlation between the two was poor (r=-0.30). In conclusion, O. circumcincta can consume oxygen and oxygen concentration at the infection site is sufficient to support at least some aerobic metabolism.  相似文献   

9.
The effects of light on the metabolic rates of the hypogean amphipod Niphargus stygius and the epigean amphipod Gammarus fossarum were compared by measuring oxygen consumption and respiratory electron transport system (ETS) activity. They were exposed to light intensities of 720 and 4700?lx at 10°C. Oxygen consumption increased significantly in N. stygius exposed to both low and high intensities of light, but no significant increase was observed in G. fossarum at either intensity. The increase of oxygen consumption in N. stygius was significantly greater at the higher light intensity. This indicates a stress response in which exploitation of half the metabolic potential for energy production in N. stygius during exposure to high light intensity constitutes an adverse effect on its metabolism, since this species usually uses less than 25% of its total metabolic potential for standard metabolic demands.  相似文献   

10.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

11.
The purpose of the present study was to determine by simulation whether oxygen deficit kinetics in decrement-load exercise (DLE) starting from a low exercise intensity is related to the oxygen uptake (Vo(2)) kinetics. In this simulation, work rate in DLE was separated into steps that were regarded as constant-load exercises (CLEs). It was assumed that Vo(2) kinetics behaved exponentially at the onset and offset of each CLE, respectively. Vo(2) at the onset of CLEs increases at the same time and becomes a recovery phase step-by-step corresponding to the decrement of work rate. The sum of Vo(2) values at the onset of CLEs at a given time (nt-Vo(2)) corresponds to Vo(2) excluding oxygen debt in DLE. The sum of Vo(2) values at the offset of CLEs at a given time (dt-Vo(2)) corresponds to Vo(2) related to oxygen debt in DLE. The total of net- and dt-Vo(2) values is equivalent to Vo(2) actually observed in DLE (gs-Vo(2)). As the oxygen requirement level is a steady-state value of Vo(2) in CLE, the oxygen deficit level can be obtained by subtracting Vo(2) at the onset of CLE from the steady-state value. The oxygen deficit level at a given time was added in all CLEs. This is oxygen deficit per unit time (df-Vo(2)). Oxygen debt and oxygen deficit were calculated by integrating df-Vo(2) and dt-Vo(2) from the start of exercise to a given time, respectively. Gs-Vo(2) increased, reached a peak, and decreased linearly until the end of the DLE. Oxygen deficit increased rapidly and showed a steady state. Oxygen debt increased linearly after a time lapse. The difference between oxygen deficit and oxygen debt changed like gs-Vo(2) kinetics. Therefore, it is concluded that if we consider the repayment of oxygen debt in the oxygen deficit in DLE, the kinetics of the oxygen deficit becomes similar to gs-Vo(2) kinetics in the simulation.  相似文献   

12.
Oxygen consumption of Amphibola crenata (Gmelin) was measured in various salinity-temperature combinations (< 0.1‰ to 41‰ salinity and 5 to 30°C) in air, and following exposure to declining oxygen tensions. In all experimental conditions, respiration varied with the 0.44 power of the body weight (sd = 0.14). The aquatic rate was consistently higher than the aerial rate of oxygen consumption, although at 30 °C the two rates were similar. Oxygen consumption increased with temperature up to 25 °C in all salinities; the lowest values were recorded at temperatures below 10 °C and at 30 °C in the most dilute medium. At all exposure temperatures, the oxygen consumption of Amphibola decreased regularly with salinity down to 0.1 ‰, and following exposure to concentrated sea water (41‰). Salinity had the least effect at 15 °C which was the acclimation temperature. In general, all of the temperature coefficients (Q10 values) were low, < 1.65. However, Q10 values above 2.8 were recorded at a salinity of 17.8‰ between 10 and 15 °C. Oxygen consumption of all size classes of Amphibola was more temperature dependent in air than in water and small individuals show a greater difference between their aerial and aquatic rates than larger snails. The rates of oxygen consumption in declining oxygen tensions were expressed as fractions of the rates in air saturated sea water at each experimental salinity-temperature combination. The quadratic coefficient B2 becomes increasingly more negative with both decreasing salinity and temperatures up to 20 °C. At higher temperatures (25 and 30 °C) the response is reversed such that O2 uptake in snails becomes increasingly independent of declining oxygen tensions at higher salinities. On exposure to a salinity of 4‰, Amphibola showed no systematic response to declining oxygen tension with respect to temperature. The ability of Amphibola to maintain its rate of oxygen consumption in a wide range of environmental conditions is discussed in relation to its potential for invading terrestrial habitats and its widespread distribution on New Zealand's intertidal mudflats.  相似文献   

13.
Oxygen consumption was measured on suspensions of calcium tolerant myocytes obtained from hearts of Spontaneously Hypertensive Rats (SHR) and normotensive Wistar Kyoto Rats (WKY). Oxygen consumptions of the isolated cells were not significantly different from each other either in the presence or absence of added calcium (1.5 mM). Additionally, there was excellent agreement between the oxygen consumption of the isolated cells and estimates of basal oxygen consumption obtained from linear regression analysis of the relationship between work and myocardial oxygen utilization in isolated perfused working hearts. At any given workload there was no significant difference in oxygen consumption between SHR hearts and WKY hearts. The mechanical performance of the SHR hearts was lower compared to that of the WKY hearts at low preloads. At high preloads and high afterloads the SHR hearts developed higher pressures than did hearts obtained from WKY rats. The data suggest that: (a) basal oxygen consumption of the two hearts are similar and (b) the contractile defects in the SHR heart are not the result of hypoxia.  相似文献   

14.
环境因子对卵形鲳鲹幼鱼耗氧率和排氨率的影响   总被引:3,自引:0,他引:3  
运用封闭流水式实验方法研究温度、盐度、pH和流速对卵形鲳鲹(Trachinotus ovatus)幼鱼耗氧率和排氨率的影响.实验结果表明,随着温度的升高,耗氧率和排氨率均是先增大后减小,当温度为27℃时,耗氧率和排氨率达最大值,温度对卵形鲳鲹幼鱼耗氧率和排氨率的影响显著(P<0.0l);耗氧率和排氨率随着盐度的升高均出...  相似文献   

15.
Oxygen utilization (VO2) and lactate production by an isolated perfused canine hindlimb was evaluated at various hydrogen ion concentrations. A membrane lung perfusion system was established such that blood flow and temperature could be fixed at normal levels. Oxygen, nitrogen, and carbon dioxide (CO2) gas flows to the membrane lung were independently regulated to provide a fixed arterial oxygen content (CaO2). By changing CO2 flow, the pH of the arterial blood was varied between 6.9 and 7.6 at 10-min intervals. The mean O2 delivery (CaO2 X blood flow) was between 16.3 ML O2/min and 20.5 ml O2/min. Standard error of the mean in each dog, however, was less than 0.4 ml O2/min. VO2 was linearly related to the pH of the perfusing blood: VO2% = 100.1 pH - 643 (r = 0.866). Oxygen consumption was inversely related to PCO2: VO2% = -0.62 PCO2 + 124, but the correlation was less good (r = 0.729). Lactate production was linearly related to the pH of the perfusing blood (above a pH of 7.4): lactate produced = 22.5 pH - 162.5 (r = 0.75). At a pH below 7.4, lactate was not produced. Oxygen consumption of skeletal muscle appears critically dependent on extracellular fluid pH. A change in pH of 0.1 alters VO2 almost exactly 10%. Alkalosis is a potent stimulus to lactic acid production by skeletal muscle.  相似文献   

16.
小卷蛾线虫脱水休眠的形态与耗氧量   总被引:1,自引:0,他引:1  
报道了小卷蛾线虫 Steinernema carpocapsae (BJ品系)在高渗液中脱水进入休眠的形态变化和耗氧量。结果表明:脱水线虫的形态变化与耗氧量相关,线虫在高渗液第30 h内,脱水程度越强,耗氧量越低。线虫脱水进入休眠从形态上分为螺旋、鞘壁分离和侧线弯曲三个阶段。在螺旋阶段脱水线虫代谢开始减慢,耗氧量较对照减少了14%。在鞘壁分离阶段脱水线虫开始进入休眠,耗氧量较对照减少了65%,加水后线虫在10 min内100%复苏。在侧线弯曲阶段Ⅰ脱水线虫进入了深度休眠,耗氧量较对照减少了79%,加水后在30 min内100%复苏。  相似文献   

17.
Oxygen consumption of all four larval instars of a Chaoborus species from Socuy Reservoir in western Venezuela was studied under laboratory conditions at 25°C. On a logarithmic basis, oxygen consumption per organism increased as a smooth, linear function of body weight (0.49 power of body weight). Observed rates were lower than other Chaoborus species with comparable body weight at the same temperature. Oxygen consumption per unit weight decreased from smaller to large instar larvae. With the exception of instar I, values of oxygen consumption per unit weight were lower than values reported for other Chaoborus species. The results suggest that our species have low energy demands for maintenance, and are consistent with suggestions about high efficiency in use of energy in genus Chaoborus.  相似文献   

18.
Activity and respiration in the anemone, Metridium senile (L.), were monitored under both constant and fluctuating salinity conditions. During constant exposure to 50% sea water it was found that the animals retracted the tentacles and that the rate of oxygen consumption decreased by ≈50%. The same response was elicited from animals in 100% sea water in a contracted state. Animals exposed to continually fluctuating salinities were found to retract the tentacles, contract the body wall, and produce amounts of mucus during periods of decreasing salinities. These reactions were reversed during exposure to increasing salinity. Oxygen consumption never ceased entirely in animals exposed to dilute sea water and it was found that during declining oxygen tension M. senile regulated its oxygen consumption until the environmental oxygen tension fell to ≈30% saturation.  相似文献   

19.
Summary 1. Oxygen consumption by a group of 25 lobsters was essentially constant over a range of ambient oxygen concentrations from 1.0 to 8.5 mg/l. Consumption by groups of 35 and 50 lobsters at 15° C decreased as the concentration decreased.2. Oxygen consumption by individuals at 10° and 15° C increased as the oxygen concentration increased.3. Oxygen consumption increased as activity increased with crowding.4. Oxygen consumption almost doubled after feeding.5. Oxygen consumption per unit weight decreased with increasing size.6. The average rate of oxygen consumption by individuals doubled over the temperature range 12° to 25° C.7. Oxygen consumption in air at 6° to 25° C was much less than in water.
Sauerstoffverbrauch des HummersHomarus americanus Milne-Edwards
Kurzfassung Bei einer Gruppe von 25 Hummern wurde der Sauerstoffverbrauch in Dauerfluß-Respirometern gemessen. Bei 10° C erwies er sich als im wesentlichen konstant über einen Bereich der Sauerstoffkonzentration im umgebenden Wasser von 1,0 bis 8,5 mg/l. Bei Gruppen von 35 und 50 Hummern, welche bei 15° C getestet wurden, nahm der Sauerstoffverbrauch jedoch mit fallender Sauerstoffkonzentration etwas ab. Anstieg der Individuenzahl pro Raumeinheit (crowding) führte zu steigender Bewegungsaktivität und zu erhöhtem Sauerstoffverbrauch. Nahrungsaufnahme verursachte fast eine Verdoppelung des Sauerstoffverbrauchs. Kleine Individuen verbrauchen pro Gewichtseinheit mehr Sauerstoff als große. In manometrischen Respirometern stieg der Sauerstoffverbrauch bei hohen Sauerstoffkonzentrationen im umgebenden Wasser mit der Temperatur. Bei 6° bis 25° C war der Sauerstoffverbrauch in der Luft wesentlich geringer als im Wasser.
  相似文献   

20.
This work broadens the scope and improves the time resolution of spin-probe oximetry, a technique in which small nitroxide spin probes detect oxygen consumption via change in their relaxation properties [Froncisz, W., Lai, C.-S., & Hyde, J. S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 411-415]. For rapid oxygen kinetic studies we combined the methodology of spin-probe oximetry with a recently developed loop-gap resonator, stopped-flow EPR system [Hubbell, W. L., Froncisz, W., & Hyde, J. S. (1987) Rev. Sci. Instrum. 58, 1879-1886]. The technique used microliter volumes of reactant solutions. Enzymatic consumption of oxygen by cytochrome c oxidase in the presence of ferrocytochrome c substrate was followed continuously in time under limited-turnover conditions, where the concentration of oxygen consumed often was comparable to or less than the amount of enzyme present. In detecting less than micromolar oxygen concentration changes, we have achieved a time resolution of the order 30 ms when flow is stopped. Oxygen consumption was followed under two different limited-turnover conditions: In the first, the amount of oxygen consumed was limited by available ferrocytochrome c, and the time course of oxygen consumption and its pH dependence were compared with the optically detected ferrocytochrome c consumption. In the second, the oxygen consumed was ultimately limited by the availability of oxygen itself while ferrocytochrome c was regenerated and remained in excess.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号