首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central nervous system produces growth factors that stimulate proliferation of ameboid microglia during embryogenesis and after traumatic injury. Two microglial mitogens (MMs) are recovered from the brain of newborn rat. MM1 has an approximate molecular mass of 50 kD and a pI of approximately 6.8; MM2 has a molecular mass of 22 kD and a pI of approximately 5.2. These trypsin-sensitive proteins show specificity of action upon glia in vitro serving as growth factors for ameboid microglia but not astroglia or oligodendroglia. Although the MMs did not stimulate proliferation of blood monocytes or resident peritoneal macrophage, MM1 shows granulocyte macrophage colony-stimulating activity when tested upon bone marrow progenitor cells. Microglial mitogens may help to control brain mononuclear phagocytes in vivo. The MMs first appear in the cerebral cortex of rat during early development with peak levels around embryonic day E-20, a period of microglial proliferation. Microglial mitogens are also produced by traumatized brain of adult rats within 2 d after injury. When infused into the cerebral cortex, MM1 and MM2 elicit large numbers of mononuclear phagocytes at the site of injection. In vitro study shows that astroglia from newborn brain secrete MM2. These observations point to the existence of a regulatory system whereby secretion of proteins from brain glia helps to control neighboring inflammatory responses.  相似文献   

2.
Nucleotides released upon brain injury signal to astrocytes and microglia playing an important role in astrogliosis, but the participation of microglia in the purinergic modulation of astrogliosis is still unclear. Highly enriched astroglial cultures and co-cultures of astrocytes and microglia were used to investigate the influence of microglia in the modulation of astroglial proliferation mediated by nucleotides. In highly enriched astroglial cultures, adenosine-5’-triphosphate (ATP), adenosine 5’-O-(3-thio)-triphosphate (ATPγS), adenosine 5’-O-(3-thio)-diphosphate (ADPβS; 0.01–1 mM), and adenosine-5’-diphosphate (ADP; 0.1–1 mM) increased proliferation up to 382%, an effect abolished in co-cultures containing 8% of microglia. The loss of ATP proliferative effect in co-cultures is supported by its fast metabolism and reduced ADP accumulation, an agonist of P2Y1,12 receptors that mediate astroglial proliferation. No differences in ADPβS and ATPγS metabolism or P2Y1,12 receptors expression were found in co-cultures that could explain the loss of their proliferative effect. However, conditioned medium from microglia cultures or co-cultures treated with ADPβS, when tested in highly enriched astroglial cultures, also prevented ADPβS proliferative effect. None of the uracil nucleotides tested had any effect in proliferation of highly enriched astroglial cultures, but uridine-5′-triphosphate (UTP; 0.1–1 mM) inhibited proliferation up to 66% in co-cultures, an effect that was dependent on uridine-5’-diphosphate (UDP) accumulation, coincident with a co-localization of P2Y6 receptors in microglia and due to cell apoptosis. The results indicate that microglia control astroglial proliferation by preventing the proliferative response to adenine nucleotides and favouring an inhibitory effect of UTP/UDP. Several microglial P2Y receptors may be involved by inducing the release of messengers that restrain astrogliosis, a beneficial effect for neuronal repair mechanisms following brain injury.  相似文献   

3.
Following CNS injury, microglia respond and transform into reactive species exhibiting characteristic morphological changes that have been termed "activated" or "ameboid" microglia. In an attempt to establish that microglial reactions induced immediately after injury are caused by intrinsic mechanisms rather than infiltration of blood and its constituents, oxygenized Ringer's solution was perfused into the cerebral circulation of rats so that the circulating blood could be eliminated prior to injury induction. Under artificial respiration, a catheter was inserted from the cardiac apex into the ascending aorta, and oxygenized Ringer's solution was immediately perfused with a pulsatile blood pump, resulting in wash out of the circulating blood from the brain within 1 min. Subsequently, a cortical contusion was induced in the unilateral parietal cortex using a controlled cortical impact (CCI) device. At 5 min following the injury, the brain was fixed by perfusion of fixative through the catheter and removed. Coronal vibratome sections were then processed for CR3 immunohistochemistry to examine the microglial activation. It appeared that microglial activation with both morphological transformation and an increase in CR3 immunoreactivity was induced throughout the hemisphere ipsilateral to the injury side exclusively, even in rats with elimination of circulating blood. The microglial reactions did not differ substantially from those observed in the control rats with extensive BBB disruption. The present results thus provide direct evidence that the microglial activation induced immediately after injury is independent of infiltration of circulating blood induced by concurrent BBB disruption.  相似文献   

4.
It seems established that under pathological conditions, microglia and blood monocytes (invading the cerebral parenchyma) behave as histiocytic cells in the central nervous system. However, it has not been clear whether or not phagocytic cells are present in normal cerebral tissue. Recently, we found a new type of cell having an uptake capacity for exogenous substance at the bifurcations of small cerebral vessels except for capillaries. According to Imamoto et al. (1982), ameboid microglia, a kind of precursor of microglia, appear at a perinatal stage and can incorporate exogenous material. In the present paper, the developmental sequences of ameboid microglia and the unique cells laden with fluorescent granules are compared at a light and electron-microscopic level. From this study, it is clear that ameboid microglia are already present in the corpus callosum at 5 days after birth and are potent in their uptake capacity for horseradish peroxidase (HRP). However, at 2 weeks, they transform into star cells and the capacity for incorporation diminishes markedly. The finding is also supported by the quantitative analysis of transformation of ameboid microglia. At 3 months, glial cells do not take the administered HRP under the present conditions. On the other hand, fluorescent granular perithelial (FGP) cells arise from a leptomeningeal tissue (pia mater) and become situated in the perivascular spaces. They are not clearly defined at 5 days, and their uptake capacity for HRP has not yet developed. At 2 weeks, the FGP cells take definite forms with several inclusion bodies, and their uptake capacity for HRP attains a certain degree. Often, they are located at bifurcations of small blood vessels. At 3 months, the FGP cells differentiate completely in appearance, and their pinocytotic capacity reaches a high level. Consequently, the FGP cells belong to a different type of cell from that of ameboid microglia in their developmental sequences and assume a principal role of scavenging waste products in normal cerebral tissue.  相似文献   

5.
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.  相似文献   

6.
Microglia are mononuclear phagocytes of the central nervous system and are considered to derive from circulating bone marrow progenitors that colonize the developing human nervous system in the second trimester. They first appear as ameboid forms and progressively differentiate to process-bearing "ramified" forms with maturation. Signals driving this transformation are known to be partly derived from astrocytes. In this investigation we have used cocultures of astrocytes and microglia to demonstrate the relationship between motility and morphology of microglia associated with signals derived from astrocytes. Analysis of progressive cultures using time-lapse video microscopy clearly demonstrates the dynamic nature of microglia. We observe that ameboid microglial cells progressively ramify when cocultured with astrocytes, mirroring the "differentiation" of microglia in situ during development. We further demonstrate that individual cells undergo morphological transformations from "ramified" to "bipolar" to "tripolar" and "ameboid" states in accordance with local environmental cues associated with astrocytes in subconfluent cultures. Remarkably, cells are still capable of migration at velocities of 20-35 microm/h in a fully ramified state overlying confluent astrocytes, as determined by image analysis of motility. This is in keeping with the capacity of microglia for a rapid response to inflammatory cues in the CNS. We also demonstrate selective expression of the chemokines MIP-1alpha and MCP-1 by confluent human fetal astrocytes in cocultures and propose a role for these chemotactic cytokines as regulators of microglial motility and differentiation. The interchangeable morphological continuum of microglia supports the view that these cells represent a single heterogeneous population of resident mononuclear phagocytes capable of marked plasticity.  相似文献   

7.
After demonstration of the paracrine action of glial neurotrophic factors, gliosis has also been considered to be related to neuronal trophism and plasticity rather than solely a repair event following brain injury. S100 is a Ca2+ binding protein, present mainly in astrocytes, that exerts paracrine trophic effects on several neuronal populations. This study analyses the presence of S100 protein by means of immunohistochemistry combined with stereology in the reactive glial cells of the rat visual pathways following a lesion of the visual cortex. Adult male Wistar rats were submitted to a unilateral aspiration of the occipital cortex or to a sham operation. One week later the rats were killed and their brain processed for immunochemistry. Single antibody immunohistochemistry was performed for the visualization of glial fibrillary acidic protein (GFAP, a marker for astrocytes), OX-42 (a marker for microglia) and S100 protein. Double immunofluorescence procedures were applied for co-localization of the S100/GFAP and S100/OX-42. An optical dissector, point interceptors and rotators were used to quantify the degree of glial activation and the changes in the S100 immunoreactivity. We observed an intense microglial and astroglial reaction in addition to an increased S100 immunoreactivity in the occipital cerebral cortex, geniculate nucleus and hippocampus ipsilateral to the lesion. In the ipsilateral superior colliculus, an intense astroglial activation was accompanied by an up-regulation of S100 immunoreactivity. Double-immunofluoresence revealed an increased S100 immunoreactivity in reactive astrocytes, but not in the reactive microglia. Evidence has therefore been obtained that after mechanical trauma, the astroglial S100 protein participates in the trophism and plasticity of the injured visual pathways.  相似文献   

8.
In vitro studies show that microglia, the resident immune cells of the brain, express neurotransmitter and neuropeptide receptors which are linked to Ca(2+) signaling. Here we describe an approach to obtain Ca(2+) recordings from microglia in situ. We injected a retrovirus encoding a calcium sensor into the cortex of mice 2 days after stimulation of microglial proliferation by a stab wound injury. Microglial cells were identified with tomato lectin in acute slices prepared 3, 6, 21 and 42 days after the injury. The membrane current profile and the ameboid morphology indicated that microglial cells were activated at day 6 while at day 42 they resembled resting microglia. We recorded transient Ca(2+) responses to application of ATP, endothelin-1, substance P, histamine and serotonin. The fluorescence amplitude of ATP was increased only at day 6 compared to other time points, while responses to all other ligands did not vary. Only half of the microglial cells that responded to ATP also responded to endothelin-1, serotonin and histamine. Substance P, in contrast, showed a complete overlap with the ATP responding microglial population at day 6, at day 42 this population was reduced to 55%. Cultured cells were less responsive to these ligands. This study shows that in situ microglia consist of heterogeneous populations with respect to their sensitivity to neuropeptides and -transmitters.  相似文献   

9.
The expression of connexin36 (Cx36) was studied in primary cultures of rat brain glial cells: mature astrocytes, ameboid and ramified microglia and immature oligodendrocytes (at middle period of myelinogenesis). The data from these cells were compared with those obtained from cultures of neocortical and hypothalamic neurons. mRNA encoding Cx36 was investigated by RT-PCR, the Cx36 protein by immunocytochemistry using a polyclonal antibody against Cx36 in cells characterized by antibodies specific for the single cell types. The Cx36 was found in oligodendrocytes, both ameboid and ramified microglial cells and in neurons. Astrocytes showed no detectable expression of the Cx36. The expression of Cx36 in oligodendrocytes and microglial cells suggests an involvement of the direct cell-cell communication channels formed by Cx36 in myelin formation and in brain development, damage and repair processes.  相似文献   

10.
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line‐derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post‐natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post‐ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret‐expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4‐reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.  相似文献   

11.
In two recent papers published in Nature Neuroscience and Cell Stem Cells, Magdalena Götz and colleagues shed new light on the in vivo response of glial cells to brain injury and characterize a highly heterogeneous behavior of astrocytes to chronic and acute brain injury.Astrocytes have important roles in the brain, for example by regulating neurotransmitter clearance, controlling the formation and maintenance of synapses, and by contributing to the blood–brain barrier (BBB; for a review see [1]). In addition, astrocytes respond to acute and chronic injury by hypertrophy and induced proliferation. Notably, astrocytes in the mammalian brain represent a highly heterogeneous population and the exact cellular identity of the astrocytic response in the damaged brain remains largely unknown (for a review see [2]). Thus, live-imaging and single-cell studies are required to unravel the complexity of astrocyte behaviour and distinguish between the good and the bad effects of astrocytic activation on brain function and tissue homeostasis in response to acute and chronic injury.It is thought that astrocytes respond to injury through hypertrophy of cell bodies and processes, upregulation of the intermediate filaments GFAP and vimentin, extension of processes, proliferation and gradual overlapping of astrocytic domains (for a review see [3]). Interestingly, it is known that although some aspects of the astrocyte response to injury can be detrimental—such as the formation of a glial scar—it can also be beneficial by limiting the invasion of immune cells into the brain parenchyma [4,5,6]. However, our understanding of the response of astrocytes to injury assumes a global homogeneous response, and an unawareness of the more complex and diverse in vivo situation. Two papers from the group of Magdalena Götz, published in Nature Neuroscience and Cell Stem Cell, begin to unmask the heterogeneity of the astrocyte response to injury through in vivo live imaging after brain injury and by using multiple lesion models and comparing their effects on astroglial behaviour and properties within the injured brain.In the first study, Bardehle et al used in vivo two-photon laser-scanning microscopy to monitor individual astrocytes for up to 28 days after a stab wound to the somatosensory cortex [7]. To visualize single cells, astrocytes were labelled using different lines: GLASTCreERT2/eGFP or Confetti reporter, labelling 60–80% of all astrocytes; Aldh1l1-eGFP mice, labelling all astrocytes; and hGFAP-eGFP mice, labelling only those astrocytes with the highest GFAP expression. The authors found that most GFP+ astrocytes maintained their morphology after injury and that only subsets showed signs of hypertrophy and polarization towards the injury site. Interestingly, only a small population of astrocytes divided, all of which had their somata apposed to blood vessels (juxtavascular) and depended on proper functioning of the small RhoGTPase Cdc42 for their proliferative response. Strikingly, none of the labelled astrocytes migrated towards the lesion site, suggesting that the increase in GFAP reactivity often seen at the site of injury is not due to astrocyte migration, but rather is due to increased GFAP expression through hypertrophy, an increased number of proliferative cells and the upregulation of GFAP in cells that might not express detectable levels of GFAP before injury. Notably, migration of other glial cells (microglia and NG2+ glia) to the injury site was observed, suggesting that the migratory properties in response to injury in the brain might not be general to all glia. Thus, the contribution of activated astrocytes to the formation of a glial scar in the brain following injury might be limited and need to be reconsidered. In addition, the location of proliferating astroglial cells at juxtavascular positions, and their limited movement, suggest that these proliferating astrocytes might be a subset that is responsible for the ‘beneficial'' astrocytic response to injury by tightening the BBB, preventing the invasion of cells into the lesioned brain parenchyma. Thus, observing the glial response after brain injury in real time within their in vivo environment identified a highly selective and cell-specific astrocyte response, challenging previously held concepts of astroglial migration and massive astrocyte proliferation after injury.In the next study, Sirko et al analysed how the astroglial response varies between different types of acute or more chronic brain injury [8]. To this end the authors used four different models of injury: MCAo lesion (invasive), stab wound (invasive), APPPS1 mutation (non-invasive) and ectopic p25 activation in neurons (non-invasive). They analysed comparative data for reactive gliosis and induction of stem cell properties in activated astroglia found after brain injury (Figure 1). Interestingly, the two non-invasive, chronic lesion models induced the least response from astrocytes, with astrocytes undergoing hypertrophy but having low levels of proliferation and virtually no neurosphere-forming capacity, indicating that chronic injury in these models does not enhance astrocyte proliferation or acquisition of stem cell properties. In contrast, a much larger astrocytic response occurred in the invasive models, in which astrocytes not only underwent hypertrophy but also had a relatively high proliferative rate and formed multipotent and self-renewing neurospheres in vitro. The authors then showed that Sonic hedgehog (SHH) levels increased dramatically, but only in invasive models, and that SHH levels correlated with in vivo astrocyte proliferation rates and in vitro stem cell potential between injury conditions. By using pharmacological and genetic gain- and loss-of-function strategies, SHH signalling could indeed be identified as a crucial mediator of injury-induced acquisition of stem cell properties in astrocytes. Thus, Sirko et al identified substantial differences with respect to glial response between chronic and acute injury models and identified a molecular pathway (SHH) that at least partly accounts for enhanced astroglial response in invasive injury models.Open in a separate windowFigure 1Glial cell response, stem cell potential and extracellular Sonic hedgehog (SHH) levels vary depending on the type of brain injury. Astrocytes (yellow), NG2+ glial cells (blue) and microglia (red) reside in the uninjured intact brain, in which only NG2+ cells usually proliferate. When this tissue is studied in vitro to measure its stem cell potential, virtually no neurospheres are formed. After different types of injury, however, morphological and proliferative changes occur to all cells and their in vitro stem cell potential can be reactivated. In six-month-old APPPS1 mice, all glial cells change their morphology, with astrocytic and NG2+ hypertrophy of cell body and processes, and hypertrophy and reduction of processes in microglia. While few astrocytes proliferate, large amounts of proliferation ocurrs in both NG2+ glia and microglia. This tissue in vitro can form a few spheres that are self-renewing and multipotent, generating astrocytes, neurons and oligodendrocytes. In a model of neuronal death (CK/p25; overexpressing p25 in the postnatal forebrain), astrocytes and microglia change their morphology as described above. Astrocytes and NG2+ glia do not have any increase in proliferation rates, whereas microglia proliferate greatly. This tissue has little stem cell potential and makes only a few primary multipotent spheres. Finally, in the more invasive stab wound injury to the cortex, all glial cells become morphologically reactive, and astrocytes, NG2+ glia and microglia all proliferate in response. This tissue has the largest stem cell potential, capable of making both primary and secondary spheres with multipotent progeny. In each situation, the levels of SHH (green) can be correlated with the proliferation rates of astrocytes and in vitro stem cell potential, such that only in stab wound injury are SHH levels significantly upregulated. APPPS1, co-expresses mutated amyloid precursor protein 1 and mutated presenilin 1; NG2+, neuron-glial antigen 2.The two papers by the Götz group shed new light on the in vivo response of glial cells to brain injury and characterize a highly heterogeneous behaviour of astrocytes to chronic and acute brain injury. Surprisingly, only subsets of astrocytes proliferate or polarize, and none of them migrate towards the lesion. The juxtavascular position of proliferating astrocytes suggests that these cells might have access to the increase in SHH after invasive injury, which can regulate their division. However, it is not clear whether this proliferation is through their de-differentiation and acquisition of neural stem cell potential, or whether it is a result of a mature astrocyte division. That the astrocyte progeny remains with the original cell at the juxtavascular location suggests that they might be acting in a positive way to limit the migration of invading immune cells into the brain. Further studies on whether the increase in juxtavascular, astroglial proliferation affects the BBB permeability or decreases the number of invading cells will be important to understand this effect. If it turns out that enhanced astroglial proliferation might be generally beneficial for the injured brain, it is also tempting to speculate that for other brain injuries where the proliferation rates and SHH levels are reduced, enhanced glial proliferation in close proximity to blood vessels might help to reduce tissue damage and to improve regeneration and repair. Thus, SHH could represent a future therapeutic target to activate glial proliferation in the context of non-invasive, chronic brain injury. In any case, the acquisition of stem cell properties allowing astrocytes to form neurospheres in vitro is not directly tied to the in vivo use of these stem cell properties (for a review, see [9]). Whether the de-differentiation of astrocytes and proliferation of stem cells in vivo is beneficial or detrimental remains unclear. However, the new data have set the cellular framework for future studies to understand injury-induced astroglial stem cell characteristics in vivo and whether this in vitro potential might be unleashed for regenerative strategies in vivo.  相似文献   

12.
Aged microglia display augmented inflammatory activity after neural injury. Although aging is a risk factor for poor outcome after brain insults, the precise impact of aging-related alterations in microglia on neural injury remains poorly understood. Microglia can be eliminated via pharmacological inhibition of the colony–stimulating factor 1 receptor (CSF1R). Upon withdrawal of CSF1R inhibitors, microglia rapidly repopulate the entire brain, leading to replacement of the microglial compartment. In this study, we investigated the impact of microglial replacement in the aged brain on neural injury using a mouse model of intracerebral hemorrhage (ICH) induced by collagenase injection. We found that replacement of microglia in the aged brain reduced neurological deficits and brain edema after ICH. Microglial replacement-induced attenuation of ICH injury was accompanied with alleviated blood-brain barrier disruption and leukocyte infiltration. Notably, newly repopulated microglia had reduced expression of IL-1β, TNF-α and CD86, and upregulation of CD206 in response to ICH. Our findings suggest that replacement of microglia in the aged brain restricts neuroinflammation and brain injury following ICH.Subject terms: Neuroimmunology, Cognitive ageing  相似文献   

13.
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.  相似文献   

14.
炎症反应是造成脑卒中继发性脑损伤的关键因素之一。小胶质细胞作为脑内免疫细胞,在脑卒中的炎症反应具有重要作用。传统观念认为小胶质细胞促进炎症反应加重脑损伤。近年来的研究发现激活的小胶质细胞还能产生抗炎作用来加速脑损伤修复。因此,目前的研究将小胶质细胞分为促炎的M1型和抗炎的M2型。结合目前缺血性脑卒中的神经保护剂相对较少,靶向调控小胶质细胞的极化可能成为脑卒中新的治疗策略。研究发现中药能够通过抑制M1型小胶质细胞,并促进M2型的小胶质细胞来改善缺血性脑损伤,从而展现出对缺血性脑卒中的治疗潜力。本文综述了中药通过调节小胶质细胞极化表型来治疗脑卒中的相关研究,以期为缺血性脑卒中药物开发提供新的思路。  相似文献   

15.
The inflammatory central nervous system response that involves activated microglia and reactive astrocytes may both heal and harm neurons, as inflammatory mediators lead to neuroprotection or excitation at one dose but to injury at a different concentration. To investigate these complex cellular interactions, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), a selective substrate inhibitor of glutamate transport, was infused during 14 days in the rat hippocampus at three different rates: 5, 10 and 25 nmol/h. A microglial reaction appeared at the 5 nmol/h PDC rate in absence of astroglial reaction and neuronal loss. Microgliosis and neuronal death were observed at PDC 10 nmol/h in absence of astrogliosis and calcium precipitation, whereas all four aspects were present at the highest rate. This dissociation between neuronal loss and astroglial reactivity took place in presence of a permanent microglial reaction. These data suggest a specific response of microglia to PDC whose neuronal effects may differ with the infused dose.  相似文献   

16.
Interferon-gamma and lipopolysaccharide (IFN-gamma/LPS) induce expression of inducible nitric oxide synthase (iNOS) protein both in cells in vitro and in the brain in vivo. In cultured cells, excessive production of nitric oxide (NO) induces neuronal cell death. However, it is still unclear whether IFN-gamma and LPS might induce neuronal cell death in vivo. In this study, we examined the neuronal cell death and induction of major histocompatibility complex (MHC) antigens after microinjection of IFN-gamma/LPS into the rat hippocampus. Although microglia appeared morphologically ramified in the normal and vehicle-injected hippocampus, microinjection of IFN-gamma/LPS immediately induced the ameboid type. From days 1-7, iNOS was expressed in ameboid microglia surrounding the site of the microinjection. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells appeared among the granular neurons of the dentate gyrus on day 3 and peaked about 7 days after microinjection. When the NOS inhibitor N(G)-nitro-L-arginine (L-NA) was intraperitoneally administered prior to the microinjection, the number of TUNEL-positive neurons decreased in a L-NA dose-dependent manner. These results suggest that IFN-gamma/LPS induces delayed neuronal apoptosis in the hippocampus in vivo, and it possibly involves excessive NO production by iNOS. Thus, this animal model may be one of neurodegenerative with extensive inflammatory activation in the hippocampus.  相似文献   

17.
Cell Reactions Following Acute Brain Injury: A Review   总被引:5,自引:0,他引:5  
The proliferative behavior of glia following a cerebral stab wound in adult rats is reviewed. Proliferation was determined by both PCNA and [3H]thymidine labeling. Microglia were the first cells to divide and constituted the bulk of dividing cells. Both ramified and ameboid microglia divided. A smaller number of astrocytes entered the cell cycle a day later and were shown to derive from differentiated reactive cells. No differentiated oligodendroglia were labeled by thymidine, although a small number of dividing immature oligodendroglia could be detected in cultures of cells labeled in vivo. Recent studies of the properties of oligodendroglial precursors in brain repair mechanisms are discussed. The results so far support our conclusion that differentiated oligodendrocytes do not divide.  相似文献   

18.
The rapid rise in the use of mobile communications has raised concerns about health issues related to low-level microwave radiation. The head and brain are usually the most exposed targets in mobile phone users. In the brain, two types of glial cells, the astroglial and the microglial cells, are interesting in the context of biological effects from microwave exposure. These cells are widely distributed in the brain and are directly involved in the response to brain damage as well as in the development of brain cancer. The aim of the present study was to investigate whether 900 MHz radiation could affect these two different glial cell types in culture by studying markers for damage-related processes in the cells. Primary cultures enriched in astroglial cells were exposed to 900 MHz microwave radiation in a temperature-controlled exposure system at specific absorption rates (SARs) of 3 W/kg GSM modulated wave (mw) for 4, 8 and 24 h or 27 W/kg continuous wave (cw) for 24 h, and the release into the extracellular medium of the two pro-inflammatory cytokines interleukin 6 (Il6) and tumor necrosis factor-alpha (Tnfa) was analyzed. In addition, levels of the astroglial cell-specific reactive marker glial fibrillary acidic protein (Gfap), whose expression dynamics is different from that of cytokines, were measured in astroglial cultures and in astroglial cell-conditioned cell culture medium at SARs of 27 and 54 W/kg (cw) for 4 or 24 h. No significant differences could be detected for any of the parameters studied at any time and for any of the radiation characteristics. Total protein levels remained constant during the experiments. Microglial cell cultures were exposed to 900 MHz radiation at an SAR of 3 W/kg (mw) for 8 h, and I16, Tnfa, total protein and the microglial reactivity marker ED-1 (a macrophage activation antigen) were measured. No significant differences were found. The morphology of the cultured astroglial cells and microglia was studied and appeared to be unaffected by microwave irradiation. Thus this study does not provide evidence for any effect of the microwave radiation used on damage-related factors in glial cells in culture.  相似文献   

19.
Activated microglia and astroglia are known to be involved in a variety of neurodegenerative diseases, including prion diseases. In the present experiments, we studied activation of astroglia and microglia after intraocular scrapie infection in transgenic mice expressing prion protein (PrP) in multiple cell types (tg7 mice) or in neurons only (tgNSE mice). In this model, scrapie infection and protease-resistant PrP deposition occurs in the retinas of both strains of mice, but retinal degeneration is observed only in tg7 mice. Our results showed that the retinas of tg7 and tgNSE mice both had astroglial activation with increased chemokine expression during the course of infection. However, only tg7 retinas exhibited strong microglial activation compared to tgNSE retinas, which showed little microglial activation by biochemical or morphological criteria. Therefore, microglial PrP expression might be required for scrapie-induced retinal microglial activation and damage. Furthermore, microglial activation preceded retinal neurodegeneration in tg7 mice, suggesting that activated microglia might contribute to the degenerative process, rather than being a response to the damage. Surprisingly, brain differed from retina in that an altered profile of microglial activation markers was upregulated, and the profiles in the two mouse strains were indistinguishable. Microglial activation in the brain was associated with severe brain vacuolation and neurodegeneration, leading to death. Thus, retinal and brain microglia appeared to differ in their requirements for activation, suggesting that different activation pathways occur in the two tissues.  相似文献   

20.
Prion diseases or transmissible spongiform encephalopathy diseases are typically characterized by deposition of abnormally folded partially protease-resistant host-derived prion protein (PrPres), which is associated with activated glia and increased release of cytokines. This neuroinflammatory response may play a role in transmissible spongiform encephalopathy pathogenesis. We previously reported that brain homogenates from prion-infected mice induced cytokine protein release in primary astroglial and microglial cell cultures. Here we measured cytokine release by cultured glial cells to determine what factors in infected brain contributed to activation of microglia and astroglia. In assays analyzing IL-12p40 and CCL2 (MCP-1), glial cells were not stimulated in vitro by either PrPres purified from infected mouse brains or prion protein amyloid fibrils produced in vitro. However, significant glial stimulation was induced by clarified scrapie brain homogenates lacking PrPres. This stimulation was greatly reduced both by antibody to cyclophilin A (CyPA), a known mediator of inflammation in peripheral tissues, and by cyclosporine A, a CyPA inhibitor. In biochemical studies, purified truncated CyPA fragments stimulated a pattern of cytokine release by microglia and astroglia similar to that induced by scrapie-infected brain homogenates, whereas purified full-length CyPA was a poor stimulator. This requirement for CyPA truncation was not reported in previous studies of stimulation of peripheral macrophages, endothelial cell cardiomyocytes, and vascular smooth muscle cells. Therefore, truncated CyPA detected in brain following prion infection may have an important role in the activation of brain-derived primary astroglia and microglia in prion disease and perhaps other neurodegenerative or neuroinflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号