首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M C Souroujon  S Carmon  A Safran  S Fuchs 《FEBS letters》1991,288(1-2):222-226
Antibodies to a synthetic peptide corresponding to residues 346-359 of the Torpedo acetylcholine receptor (AChR) gamma subunit, were employed to compare the adult and embryonic receptor. This peptide contains a consensus phosphorylation site for cAMP-dependent protein kinase (PKA). The anti-peptide antibodies discriminated between adult and embryonic AChRs, and reacted preferentially with the adult gamma form. These observed immunological differences did not seem to stem from different phosphorylation states. Our results suggest that the embryonic Torpedo AChR may have a gamma-like subunit that differs from the known adult form of this subunit, at least in the specific region that contains the phosphorylation site for PKA.  相似文献   

2.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We have synthesized a tetradecapeptide corresponding to residues 354-367 of the delta-subunit of Torpedo acetylcholine receptor. This peptide contains the sequence Arg-Arg-Ser-Ser which has been proposed as the site for phosphorylation of the acetylcholine receptor (AChR) by an endogenous cAMP-dependent protein kinase. We have shown that the synthetic peptide can be phosphorylated by the catalytic subunit of bovine heart cAMP-dependent protein kinase. Antibodies elicited against peptide 354-367 were shown to cross-react with native AChR and to bind specifically to the delta- and gamma-subunit as detected by immunoblotting. Furthermore, antipeptide antibodies were shown to inhibit specifically the cAMP-dependent phosphorylation of both the delta- and gamma-subunits. This suggests that the phosphorylation sites in the delta- and gamma-subunits are highly cross-reactive, and is in agreement with the demonstration that an endogenous cAMP-dependent kinase phosphorylates these two subunits, probably on homologous sequences. Tryptic digestion of the delta-subunit isolated from phosphorylated AChR yields a single 25-kd phosphorylated fragment. Immunoblotting experiments allowed us to map peptide 354-367 within this phosphorylated fragment.  相似文献   

4.
Purified acetylcholine receptor is rapidly and specifically phosphorylated by partially purified protein kinase C, the Ca2+/phospholipid-dependent enzyme. The receptor delta subunit is the major target for phosphorylation and is phosphorylated on serine residues to a final stoichiometry of 0.4 mol of phosphate/mol of subunit. Phosphorylation is dose-dependent with a Km value of 0.2 microM. Proteolytic digestion of the delta subunit phosphorylated by either protein kinase C or the cAMP-dependent protein kinase yielded a similar pattern of phosphorylated fragments. The amino acids phosphorylated by either kinase co-localized within a 15-kDa proteolytic fragment of the delta subunit. This fragment was visualized by immunoblotting with antibodies against a synthetic peptide corresponding to residues 354-367 of the receptor delta subunit. This sequence, which contains 3 consecutive serine residues, was recently shown to include the cAMP-dependent protein kinase phosphorylation site (Souroujon, M. C., Neumann, D., Pizzighella, S., Fridkin, M., and Fuchs, S. (1986) EMBO J. 5, 543-546). Concomitantly, the synthetic peptide 354-367 was specifically phosphorylated in a Ca2+- and phospholipid-dependent manner by protein kinase C. Furthermore, antibodies directed against this peptide inhibited phosphorylation of the intact receptor by protein kinase C. We thus conclude that both the cAMP-dependent protein kinase and protein kinase C phosphorylation sites reside in very close proximity within the 3 adjacent serine residues at positions 360, 361, and 362 of the delta subunit of the acetylcholine receptor.  相似文献   

5.
A Safran  D Neumann    S Fuchs 《The EMBO journal》1986,5(12):3175-3178
Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms.  相似文献   

6.
The involvement of CK1 (casein kinase 1) delta in the regulation of multiple cellular processes implies a tight regulation of its activity on many different levels. At the protein level, reversible phosphorylation plays an important role in modulating the activity of CK1delta. In the present study, we show that PKA (cAMP-dependent protein kinase), Akt (protein kinase B), CLK2 (CDC-like kinase 2) and PKC (protein kinase C) alpha all phosphorylate CK1delta. PKA was identified as the major cellular CK1deltaCK (CK1delta C-terminal-targeted protein kinase) for the phosphorylation of CK1delta in vitro and in vivo. This was implied by the following evidence: PKA was detectable in the CK1deltaCK peak fraction of fractionated MiaPaCa-2 cell extracts, PKA shared nearly identical kinetic properties with those of CK1deltaCK, and both PKA and CK1deltaCK phosphorylated CK1delta at Ser370 in vitro. Furthermore, phosphorylation of CK1delta by PKA decreased substrate phosphorylation of CK1delta in vitro. Mutation of Ser370 to alanine increased the phosphorylation affinity of CK1delta for beta-casein and the GST (gluthatione S-transferase)-p53 1-64 fusion protein in vitro and enhanced the formation of an ectopic dorsal axis during Xenopus laevis development. Anchoring of PKA and CK1delta to centrosomes was mediated by AKAP (A-kinase-anchoring protein) 450. Interestingly, pre-incubation of MiaPaCa-2 cells with the synthetic peptide St-Ht31, which prevents binding between AKAP450 and the regulatory subunit RII of PKA, resulted in a 6-fold increase in the activity of CK1delta. In summary, we conclude that PKA phosphorylates CK1delta, predominantly at Ser370 in vitro and in vivo, and that site-specific phosphorylation of CK1delta by PKA plays an important role in modulating CK1delta-dependent processes.  相似文献   

7.
The delta-subunit of the nicotinic acetylcholine receptor from Torpedo californica electric tissue isolated form receptor purified in the absence of protein phosphatase inhibitors contains a total of four phosphate groups. Three of these are shown to represent phosphoserine groups. The fourth possible represents phosphotyrosine. The phosphate groups are localized within the primary structure: We found phosphoserine in positions delta S361 and delta S377, the predicted sites phosphorylated by PKA and PKC, respectively. In addition, we found that position delta S362 is also phosphorylated. Phosphorylation experiments with the synthetic peptide delta L357-delta K368 show that phosphorylation of this novel site can be catalyzed by PKA and by PKC. It is concluded that the delat-subunit of the acetylcholine receptor is stably and not transiently phosphorylated. Implications for the physiological functions of receptor phosphorylation are discussed.  相似文献   

8.
The effects of transient cerebral ischemia on phosphorylation of the NR1 subunit of the NMDA receptor by protein kinase C (PKC) and protein kinase A (PKA) were investigated. Adult rats received 15 min of cerebral ischemia followed by various times of recovery. Phosphorylation was examined by immunoblotting hippocampal homogenates with antibodies that recognized NR1 phosphorylated on the PKC phosphorylation sites Ser890 and Ser896, the PKA phosphorylation site Ser897, or dually phosphorylated on Ser896 and Ser897. The phosphorylation of all sites examined increased following ischemia. The increase in phosphorylation by PKC was greater than by PKA. The ischemia-induced increase in phosphorylation was predominantly associated with the population of NR1 that was insoluble in 1% deoxycholate. Enhanced phosphorylation of NR1 by PKC and PKA may contribute to alterations in NMDA receptor function in the postischemic brain.  相似文献   

9.
Abstract: The γ2 subunit of the GABAA receptor (GABAA-R) is alternatively spliced. The long variant (γ2L) contains eight additional amino acids that possess a consensus sequence site for protein phosphorylation. Previous studies have demonstrated that a peptide or fusion protein containing these eight amino acids is a substrate for protein kinase C (PKC), but not cyclic AMP-dependent protein kinase A (PKA)-stimulated phosphorylation. We have examined the ability of PKA, PKC, and Ca2+/calmodulin-dependent protein kinase (CAM kinase II) to phosphorylate a synthetic peptide corresponding to residues 336–351 of the intracellular loop of the γ2L subunit and inclusive of the alternatively spliced phosphorylation consensus sequence site. PKC and CAM kinase II produced significant phosphorylation of this peptide, but PKA was ineffective. The K m values for PKC-and CAM kinase II-stimulated phosphorylation of this peptide were 102 and 35 μM , respectively. Maximal velocities of 678 and 278 nmol of phosphate/min/mg were achieved by PKC and CAM kinase II, respectively. The phosphorylation site in the eight-amino-acid insert of the γ2L subunit has been shown to be necessary for ethanol potentiation of the GABAA-R. Thus, our results suggest that PKC, CAM kinase II, or both may play a role in the effects of ethanol on GABAergic function.  相似文献   

10.
Mouse BC3H1 myocytes were incubated with 32Pi before acetylcholine receptors were solubilized, immunoprecipitated, and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. More than 90% of the 32P found in the receptor was bound to the delta subunit. Two phosphorylation sites in this subunit were resolved by reverse phase high performance liquid chromatography after exhaustive proteolysis of the protein with trypsin. Sites 1 and 2 were phosphorylated to approximately the same level in control cells. The divalent cation ionophore, A23187, increased 32P in site 1 by 40%, but did not affect the 32P content of site 2. In contrast, isoproterenol increased 32P in site 2 by more than 60%, while increasing 32P in site 1 by only 20%. When dephosphorylated receptor was incubated with [gamma-32P]ATP and the catalytic subunit of cAMP-dependent protein kinase, the delta subunit was phosphorylated to a maximal level of 1.6 phosphates/subunit. Approximately half of the phosphate went into site 2, with the remainder going into a site not phosphorylated in cells. The alpha subunit was phosphorylated more slowly, but phosphorylation of both alpha and delta subunits was blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. Phosphorylation of the receptor was also observed with preparations of phosphorylase kinase. In this case phosphorylation occurred in the beta subunit and site 1 of the delta subunit, neither of which were phosphorylated by cAMP-dependent protein kinase. The rate of receptor phosphorylation by phosphorylase kinase was slow relative to that catalyzed by cAMP-dependent protein kinase. Therefore, it can not yet be concluded that phosphorylase kinase phosphorylates the beta subunit and the delta subunit site 1 in cells. However, the results strongly support the hypothesis that phosphorylation by cAMP-dependent protein kinase accounts for phosphorylation of the alpha subunit and the delta subunit site 2 in response to elevations in cAMP.  相似文献   

11.
Phosphorylation of the cystic fibrosis transmembrane conductance regulator.   总被引:17,自引:0,他引:17  
Regulation of epithelial chloride flux, which is defective in patients with cystic fibrosis, may be mediated by phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR) by cyclic AMP-dependent protein kinase (PKA) or protein kinase C (PKC). Part of the R-domain of CFTR (termed CF-2) was expressed in and purified from Escherichia coli. CF-2 was phosphorylated on seryl residues by PKA, PKC, cyclic GMP-dependent protein kinase (PKG), and calcium/calmodulin-dependent protein kinase I (CaM kinase I). Direct amino acid sequencing and peptide mapping of CF-2 revealed that serines 660, 700, 737, and 813 as well as serine 768, serine 795, or both were phosphorylated by PKA and PKG, and serines 686 and 790 were phosphorylated by PKC. CFTR was phosphorylated in vitro by PKA, PKC, or PKG on the same sites that were phosphorylated in CF-2. Kinetic analysis of phosphorylation of CF-2 and of synthetic peptides confirmed that these sites were excellent substrates for PKA, PKC, or PKG. CFTR was immunoprecipitated from T84 cells labeled with 32Pi. Its phosphorylation was stimulated in response to agents that activated either PKA or PKC. Peptide mapping confirmed that CFTR was phosphorylated at several sites identified in vitro. Thus, regulation of CFTR is likely to occur through direct phosphorylation of the R-domain by protein kinases stimulated by different second messenger pathways.  相似文献   

12.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

13.
The nicotinic acetylcholine receptor is a substrate for cAMP-dependent protein kinase both in vitro and in vivo. Recently, it has been demonstrated that phosphorylation of the nicotinic receptor by this kinase increases its rate of rapid desensitization. We now report the identification of the cAMP-dependent phosphorylation sites on the gamma and delta subunits. Two-dimensional phosphopeptide mapping of the phosphorylated gamma and delta subunits, after limit proteolysis with thermolysin, indicated that each subunit is phosphorylated on a single site. Phosphoamino acid analysis of the 32P-labeled subunits demonstrates that phosphorylation had occurred exclusively on serine residues. Purified phosphorylated subunits were cleaved with cyanogen bromide and the resultant phosphopeptides were purified by reverse-phase high performance liquid chromatography. Shorter phosphopeptides, obtained by secondary digestion with trypsin, were purified and subjected to both automated gas-phase sequencing and manual Edman degradation. The results demonstrate that the gamma subunit was phosphorylated at Ser-353, contained within the sequence Arg-Arg-Ser(P)-Ser-Phe-Ile and that the delta subunit was phosphorylated at Ser-361, contained within the sequence Arg-Ser-Ser(P)-Ser-Val-Gay-Tyr-Ser-Lys. Determination of the sites phosphorylated within the structure of the gamma and delta subunits should contribute to the molecular characterization of the regulation of desensitization of the nicotinic acetylcholine receptor by protein phosphorylation.  相似文献   

14.
The mechanisms of GnRH-induced desensitization of LH secretion are poorly understood. Protein kinase C (PKC) and protein kinase A (PKA) desensitize some receptors of the 7-membrane type, and the GnRH receptor has consensus phosphorylation sites for PKC in the first and third intracellular loops, and a site for PKA in the first intracellular loop. In the first set of experiments we determined whether synthetic peptides representing the three intracellular loops of the receptor could be phosphorylated in vitro by purified PKC and PKA. As compared with a model substrate peptide for PKC, the third intracellular loop was phosphorylated 74% and the first intracellular loop 21%; PKA-phosphorylated the first intracellular loop peptide 17% as well as a model peptide substrate. In the second set of experiments, we used phorbol 12-myristate 13 acetate (PMA), an established PKC stimulator, and cholera toxin (CTX), established to activate the Gs protein and presumed to activate PKA, to treat cultured rat pituitary cells followed by LH measurements. Treatment with both drugs severely impaired GnRH-stimulated LH secretion whereas neither drug alone reduced LH secretion. Dibutyryl cAMP did not duplicate the effects of cholera toxin suggesting that the CTX action could not be explained by an increase in cAMP. These results suggest that more than one intracellular signaling pathway requires activation in order to induce desensitization; one pathway involves PKC and the other involves a pathway stimulated by cholera toxin, presumably Gs protein, which does not involve PKA.  相似文献   

15.
The alpha subunit of the sodium channel purified from rat brain is rapidly and selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 3 to 4 mol of 32P/mol of saxitoxin-binding activity. The rate of phosphorylation is comparable to that of the synthetic peptide analog of the phosphorylation site of pyruvate kinase, one of the best substrates for cAMP-dependent protein kinase. An endogenous cAMP-dependent protein kinase that is present in the partially purified sodium channel preparations also selectively phosphorylates the alpha subunit. The specificity and rapidity of the phosphorylation reaction are consistent with the hypothesis that the alpha subunit is phosphorylated by cAMP-dependent protein kinase in vivo.  相似文献   

16.
Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission in the brain and are thought to be involved in learning and memory formation. The activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors can be regulated by direct phosphorylation of their subunits, which affects the electrophysiological properties of the receptor, and the receptor association with numerous proteins that modulate membrane traffic and synaptic targeting of the receptor. In the present study we investigated the association of protein kinase C (PKC) gamma isoform with the GluR4 AMPA receptor subunit. PKC gamma was co-immunoprecipitated with GluR4 AMPA receptor subunit in rat cerebellum and in cultured chick retina cell extracts, and immunocytochemistry experiments showed co-localization of GluR4 and PKC gamma in cultured chick retinal neurons. Pull-down assays showed that native PKC gamma binds the GluR4 C-terminal membrane-proximal region, and recombinant PKC gamma was retained by GST-GluR4 C-terminal fusion protein, suggesting that the kinase binds directly to GluR4. Furthermore, GST-GluR4 C-terminal protein was phosphorylated on GluR4 Ser-482 by bound kinases, retained by the fusion protein, including PKC gamma. The GluR4 C-terminal segment that interacts with PKC gamma, which lacks the PKC phosphorylation sites, inhibited histone H1 phosphorylation by PKC, to the same extent as the PKC pseudosubstrate peptide 19-31, indicating that PKC gamma bound to GluR4 preferentially phosphorylates GluR4 to the detriment of other substrates. Additionally, PKC gamma expression in GluR4 transfected human embryonic kidney 293T cells increased the amount of plasma membrane-associated GluR4. Our results suggest that PKC gamma binds directly to GluR4, thereby modulating the function of GluR4-containing AMPA receptors.  相似文献   

17.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

18.
The NR1 subunit of the NMDA receptor has two serines (S890 and S896) whose phosphorylation by protein kinase C (PKC) differentially modulates NMDA receptor trafficking and clustering. It is not known which PKC isoforms phosphorylate these serines. In primary cultures of cerebellar neurons, we examined which PKC isoforms are responsible for the phosphorylation S890 and S896. We used specific inhibitors of PKC isoforms and antibodies recognizing specifically phosphorylated S890 or S896. The results show that PKC alpha phosphorylates preferentially S896 and PKC gamma preferentially S890. Activation of type I metabotropic glutamate receptors (mGluRs) with DHPG (3,5-dihyidroxy-phenylglycine) activates PKC gamma but not PKC alpha or beta. We found that activation of mGluRs by DHPG increases S890 but not S896 phosphorylation, supporting a role for PKC gamma in the physiological modulation of S890 phosphorylation. It is also shown that the pool of NR1 subunits present in the membrane surface contains phosphorylated S890 but not phosphorylated S896. This supports that differential phosphorylation of S890 and S896 by different PKC isoforms modulates cellular distribution of NMDA receptors and may also contribute to the selective modulation of NMDA receptor function and intracellular localization.  相似文献   

19.
The exogenous addition of the catalytic subunit of cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), or calmodulin (CaM) induced rapid phosphorylation of the ryanodine receptor (Ca2+ release channel) in canine cardiac microsomes treated with 1 mM [gamma-32P]ATP. Added protein kinase C (PKC) also phosphorylated the cardiac ryanodine receptor but at a relatively slow rate. The observed level of PKA-, PKG-, or PKC-dependent phosphorylation of the ryanodine receptor was comparable to the maximum level of [3H]ryanodine binding in cardiac microsomes, whereas the level of CaM-dependent phosphorylation was about 4 times greater. Phosphorylation by PKA, PKG, and PKC increased [3H]ryanodine binding in cardiac microsomes by 22 +/- 5, 17 +/- 4, and 15 +/- 9% (average +/- SD, n = 4-5), respectively. In contrast, incubation of microsomes with 5 microM CaM alone and 5 microM CaM plus 1 mM ATP decreased [3H]ryanodine binding by 38 +/- 14 and 53 +/- 15% (average +/- SD, n = 6), respectively. Phosphopeptide mapping and phosphoamino acid analysis provided evidence suggesting that PKA, PKG, and PKC predominantly phosphorylate serine residue(s) in the same phosphopeptide (peptide 1), whereas the endogenous CaM-kinase phosphorylates serine residue(s) in a different phosphopeptide (peptide 4). Photoaffinity labeling of microsomes with photoreactive 125I-labeled CaM revealed that CaM bound to a high molecular weight protein, which was immunoprecipitated by a monoclonal antibody against the cardiac ryanodine receptor. These results suggest that protein kinase-dependent phosphorylation and CaM play important regulatory roles in the function of the cardiac sarcoplasmic reticulum Ca2+ release channel.  相似文献   

20.
A 20-kDa DNA-binding protein that binds the AT-rich sequences within the promoters of the brain-specific protein kinase C (PKC) gamma and neurogranin/RC3 genes has been characterized as chromosomal nonhistone high-mobility-group protein (HMG)-I. This protein is a substrate of PKC alpha, beta, gamma, and delta but is poorly phosphorylated by PKC epsilon and zeta. Two major (Ser44 and Ser64) and four minor phosphorylation sites have been identified. The extents of phosphorylation of Ser44 and Ser64 were 1:1, whereas those of the four minor sites all together were <30% of the major one. These PKC phosphorylation sites are distinct from those phosphorylated by cdc2 kinase, which phosphorylates Thr53 and Thr78. Phosphorylation of HMG-I by PKC resulted in a reduction of DNA-binding affinity by 28-fold as compared with 12-fold caused by the phosphorylation with cdc2 kinase. HMG-I could be additively phosphorylated by cdc2 kinase and PKC, and the resulting doubly phosphorylated protein exhibited a >100-fold reduction in binding affinity. The two cdc2 kinase phosphorylation sites of HMG-I are adjacent to the N terminus of two of the three predicted DNA-binding domains. In comparison, one of the major PKC phosphorylation sites, Ser64, is adjacent to the C terminus of the second DNA-binding domain, whereas Ser44 is located within the spanning region between the first and second DNA-binding domains. The current results suggest that phosphorylation of the mammalian HMG-I by PKC alone or in combination with cdc2 kinase provides an effective mechanism for the regulation of HMG-I function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号