首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prothyroid hormone, thyroglobulin (Tg), is stored at high concentrations in the thyroid follicular lumen as a soluble 19S homo-dimer and as heavier soluble (27S and 37S) and insoluble (Tgm) forms. Follicular degradation of Tg may contribute to maintaining Tg concentrations compatible with follicle integrity. Here, we report on the presence of a plasminogen-like protein in the follicular lumen of normal human thyroids and its synthesis and apical secretion by cultured epithelial thyroid cells. Since all the main luminal forms of Tg are cleaved by this plasminogen-like protein, we suggest that it contributes to Tg degradation in the follicular lumen.  相似文献   

2.
The binding characteristics of the GlcNAc binding protein present in thyroid membranes (Consiglio, E., Shifrin, S., Yavin, Z., Ambesi-Impiombato, F.S., Rall, J.E., Salvatore, G., and Kohn, L.D. (1981) J. Biol. Chem. 256, 10592-10599) were reinvestigated using neoglycoproteins as probes. Plasma membrane preparations from porcine thyroid specifically bound 125I-GlcNAc35-bovine serum albumin. Binding was dependent on the presence of calcium. Binding of ligand to receptor was minimal at neutral pH and maximal at pH 5.0. Equilibrium binding studies indicated positive cooperativity of binding and a site capacity of about 60 pmol/mg of protein. Competition studies were compatible with a specificity hierarchy of GlcNAc much greater than Gal; no recognition of mannose, fucose, or glucose moieties was noted. The receptor was detergent-solubilized from plasma membrane preparations and on the basis of the defined binding properties, purified by chromatography on a GlcNAc-Sepharose affinity column. The purified GlcNAc thyroid receptor has a subunit molecular size of about 45 kDa and appears to be an oligomer composed of three subunits. The receptor was identified as a component of thyrocytes by in situ cytochemical localization with fluorescent neoglycoproteins. In certain cases it was mainly present on, or near, the apical cell surface. It is suggested that this GlcNAc receptor functions in thyroglobulin metabolism, possibly involved in recycling of internalized thyroglobulin molecules back into the follicular lumen.  相似文献   

3.
Intact rat thyroid lobes incubated in vitro release recently synthesized thyroglobulin (Tg) into the media at a faster rate than they release thyroglobulin stored in follicular structures. Differential release of this Tg fraction cannot be explained by morphological alterations in thyroid architecture during incubation. This rapidly excreted fraction exhibits a low density on rubidium chloride gradients characteristic of poorly sialylated and poorly iodinated thyroglobulin, comigrating on rubidium chloride gradients with thyroglobulin isolated from tunicamycin treated glands. This poorly sialylated and poorly iodinated thyroglobulin is itself unaffected in its density or release into the media by tunicamycin treatment. Tg isolated from the media of tunicamycin treated glands has nearly the same low iodine and low sialic acid content as rat serum thyroglobulin and does not incorporate radiolabelled glucosamine. This fraction thus appear to duplicate properties of low glycosylated-low iodinated thyroglobulin released from thyroid cells in organisms that have no follicular structures and no follicular storage process as well as from thyroid tissue in patients with thyroid disease states, particularly thyroid tumors. Thus it is proposed a "short loop" pathway of low-glycosylated low-iodinated thyroglobulin directly into circulation, that bypasses and is not stored in the follicular lumen, the "long loop".  相似文献   

4.
Follicular thyroglobulin (TG) reflects the storage of both iodine and thyroid hormone. This is because it is a macromolecular precursor of thyroid hormone and organic iodinated compound in follicular lumen. Thus, it may have an important feedback role in thyroid function. In this study, monolayer cells were cultured and follicles were reconstituted with primary pig thyroid cells in vitro. Reconstituted follicles were treated with iodine and methimazole (MMI), a drug that blocks iodine organification and reduces the degree of TG iodination in follicular lumen. The high degree of iodinated TG in follicular lumen was observed to inhibit thyroid-restricted gene expression. To confirm this finding, monolayer thyroid cells were treated with a different degree of TG iodination at the same concentration. These iodinated TG were extracted from reconstituted follicles of different groups. In this manner, this study provides firsthand evidence suggesting that follicular TG inhibits the expressions of thyroid-restricted genes NIS, TPO, TG, and TSHr.  相似文献   

5.
Summary A sugar-binding protein, or endogenous lectin, was localized on fixed and paraffin-embedded thyroid sections by means of fluorescein-labelled neoglycoproteins. Fluorescence microscopy showed the binding of this lectin to be dependent on calcium ions and acidic pH and indicated sugar specificity for GlcNAc moieties only. In human, porcine and murine thyrocytes, specific binding was observed mainly on subcellular organelles. Conversely, in rabbit thyrocytes, specific labelling was seen mostly at the apical cell surface facing the follicular lumen. The possibility that this novel endogenous lectin is involved in the Tg metabolism is considered.Abbreviations BSA bovine serum albumin - F BSA Fluoresceinylated BSA - GlcNAc N-Acetylglucosamine - Lac lactose - Man mannose - Man 6-P mannose-6-phosphate - MES morpholino ethanesulfonic acid - PBS phosphate buffered saline - Tg thyroglobulin  相似文献   

6.
The biochemical properties of serum thyroglobulin obtained from six patients with follicular carcinoma of the thyroid and distant metastases to bone(s) have been studied. Since it is difficult to isolate sufficient thyroglobulin from serum samples, in vivo radioiodinated serum thyroglobulin obtained after radioiodine administration was used. In contrast to a sharp salting-out pattern observed with native thyroglobulin isolated from normal thyroid tissue, a broad salting-out curve was seen with metastatic serum thyroglobulin. The metastatic serum thyroglobulin eluted with low ionic strength from ion-exchange column. More than 95% of metastatic serum thyroglobulin could be bound to concanavalin-A sepharose and be eluted with 0.5 M alpha-methyl mannoside. The reactivity of metastatic serum thyroglobulin and native thyroglobulin towards concanavalin-A was comparable. Both types of thyroglobulins showed identical mobilities on sucrose linear density gradient centrifugation. The metastatic serum thyroglobulin from follicular carcinoma of the thyroid thus appears to be 19 S thyroglobulin with near normal concanavalin-A binding sugars but altered surface charges.  相似文献   

7.
Iodinated thyroglobulin stored in the thyroid follicular lumen is subjected to an internalization process and thought to be transferred into the lysosomal compartment for proteolytic cleavage and thyroid hormone release. In the present study, we have designed in vitro models to study: 1) the transfer of endocytosed thyroglobulin into lysosomes, and 2) the intracellular fate of free thyroid hormones and iodinated precursors generated by intralysosomal proteolysis of thyroglobulin. Open follicles prepared from pig thyroid tissue by collagenase treatment were used to probe the delivery of exogenous thyroglobulin to lysosomes via the differentiated apical cell membrane. Open follicles were incubated with pure [125I]thyroglobulin with or without unlabeled thyroglobulin in the presence or in the absence of chloroquine. Subcellular fractionation on a Percoll gradient showed that [125I]thyroglobulin was internalized and present in low (for the major part) and high density thyroid vesicles. In chloroquine-treated open follicles, we observed the appearance of a definite fraction of [125I]thyroglobulin in a lysosome subpopulation having the expected properties of phagolysosomes or secondary lysosomes. In contrast, in control open follicles, the amount of [125I]thyroglobulin or degradation products found in high density vesicles was lower and associated with the bulk of lysosomes, i.e., primary lysosomes. The content in thyroglobulin and degradation products of lysosomes at steady-state was analyzed by Western blot using polyclonal anti-pig thyroglobulin antibodies. Under reducing conditions, immunoreactive thyroglobulin species correspond to polypeptides with molecular weights ranging from 130,000 to less than 20,000. The presence of free thyroid hormones and iodotyrosines inside lysosomes and their intracellular fate was studied in dispersed thyroid cells labeled with [125I]iodide. Neo-iodinated [125I]thyroglobulin gave rise to free [125I]T4 which was secreted into the medium. In addition to released [125I]T4, a fraction of free [125I]T4 was identified inside the cells. Lysosomes isolated from dispersed thyroid cells did not contain significant amounts of free [125I]T4. The free intracellular [125I]T4 fraction seems to represent an intermediate 'hormonal pool' between thyroglobulin-bound T4 and secreted T4. Evidence for such a precursor-product relationship was obtained from pulse-chase experiments. In conclusion: 1) open thyroid follicles have the ability to internalize thyroglobulin by a mechanism of limited capacity and to address the endocytosed ligand to lysosomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
In primary cultures of ovine thyroid cells, TSH induced the expression of several differentiated functions including the formation of follicles, and synthesis and storage of iodinated thyroglobulin in the follicular lumen. In the present report, these follicles were shown by transmission (TEM) and scanning electron microscopy (SEM) to be intact, comprised of two or more cells and to possess numerous microvilli on the inner cell membranes facing the follicular lumen. The TSH-induced formation of follicles was reversible and dynamic, with the kinetics of formation preceding that of iodination. The follicles were further demonstrated to be functional in terms of thyroglobulin storage and iodination.  相似文献   

9.
Pig thyroid slices were incubated with Na131I and the 17--19S 131I-labeled thyroglobulin isolated was subjected to dissociation with 0.3 mM sodium dodecyl sulphate SDS) on sucrose density gradient centrifugation and to iodoamino acid analysis. During the incubation, initially dissociable thyroglobulin was gradually altered to 0.3 mM SDS-resistant species with increasing incorporation of iodine. Microsome-bound, poorly iodinated thyroglobulin and preformed thyroglobulin were chemically iodinated and then subjected to analysis of dissociability and iodoamino acid contents with newly incorporated iodine. The results indicated that the behavior of the former thyroglobulin resembled that of 131I-thyroglobulin obtained from the slices. Then, thyroid slices were incubated for 3 min with Na131I and 3H-leucine with or without 10-min chase incubation. The sucrose density gradient centrifugation patterns of 131I and 3H-radioactivity of cytoplasmic extracts indicated that 131I-thyroglobulin is contained in particulates, especially in vesicles with low density(d=1.12) and that some of them are released into the soluble fraction within 10 min. The vesicles contained peroxidase and NADH-cytochrome c reductase, and are probably exocytotic vesicles in the apical area of cytoplasm of follicular cells. No positive evidence was obtained that plasma membranes participate in the iodination of thyroglobulin under the present experimental conditions. These results suggest that, in the incubation of thyroid slices, iodine atoms are preferentially incorporated into newly synthesized, less iodinated thyroglobulin, rather than preformed thyroglobulin, and that the iodination occurs, at least to a certain degree, in apical vesicles before the thyroglobulin is secreted into the colloid lumen.  相似文献   

10.
Newly synthesized thyroglobulin transiting the secretory pathway is posttranslationally modified by addition of oligosaccharides to asparagine N-linked residues. The effect of divalent cation depletion on oligosaccharide processing of Tg was studied in FRTL-5 cells. Treatment with an ionophore, A23187, or thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum ATPases delayed Tg secretion. These effects were accompanied by a normal distribution of the marker of the endoplasmic reticulum protein disulfide isomerase. Analysis of the thyroglobulin oligosaccharides by Bio-gel P4 chromatography showed that in the presence of A23187 and thapsigargin the addition of peripheral sialic acid and possibly galactose is inhibited. These findings were strengthened by experiments of exoglycosidase digestion and SDS-PAGE analysis of the resulting products. These results reveal a cellular mechanism of production of thyroglobulin with incompletely processed complex chains, i.e., the ligand of the recently described GlcNAc and asialoglycoprotein receptors of the thyroid. Since A23187 and thapsigargin inhibit biosynthetically the addition of peripheral sugars on N-linked oligosaccharides chains, the thyroglobulin molecules secreted in the presence of A23187 and thapsigargin should greatly facilitate studies on the function of the GlcNAc and asialoglycoprotein receptors of the thyroid.  相似文献   

11.
12.
MATURATION OF THE RAT FETAL THYROID   总被引:2,自引:2,他引:0       下载免费PDF全文
Maturation of the rat fetal thyroid was studied with the aid of I131 and of fluorescence and electron microscopy. The I131 concentration of the fetal gland increased exponentially from day 17 to day 20 of gestation and was related to the weight of the fetus (and presumably the weight of the thyroid) and also to the quantity of I131 accumulated by the fetus. In the 17-day gland, thyroglobulin or immunologically similar material was sparsely present in the incipient lumens of some cell clusters. With maturation, this material increased and was also observed within follicular cells on days 18 to 19 of gestation. On day 20, the specifically reacting material was present in the follicular lumens and was absent from the cytoplasm of follicular epithelium. Ultrastructurally, the earliest thyroid cells examined were replete with all the organelles found in the more mature epithelium. No direct correlation could be made between the cytoplasmic structures and the presence of thyroglobulin, although the granular endoplasmic reticulum was most likely the organelle responsible for synthesis of thyroglobulin. Thyroglobulin or a precursor was found in fetal thyroid cells before measurable quantities of I131 were concentrated and before cytoplasmic droplets appeared.  相似文献   

13.
The authors study by means of immunoperoxidase method the pattern of thyroglobulin, triiodothyronine and thyroxine distribution in 58 cases of thyroid disorders: 15 euthyroid goiters, 10 Graves' disease, 7 Hashimoto's thyroiditis, 11 folliculo-papillary carcinomas (6 primary tumors and 5 lymph node metastases), 8 follicular carcinomas, 4 anaplastic carcinomas and 3 medullary carcinomas. Thyroglobulin, triiodothyronine and thyroxine were present in most of the thyroid disorders, excepting anaplastic and medullary carcinomas. Thyroglobulin and thyroxine were localized both in the follicular epithelium and in the colloid, whereas triiodothyronine was present especially in the follicular cells. The thyroid hormones distribution in benign lesions is rather similar. In carcinomas, the pattern of thyroglobulin, triiodothyronine and thyroxine is more heterogeneous, but generally the triiodothyronine distribution is similar to that of thyroglobulin. In some carcinomas, triiodothyronine and thyroxine showed a weak or negative immunostaining. The immunoperoxidase method is a valuable tool in the study of functional disturbances in the thyroid pathology and in the diagnosis of thyroid carcinoma metastases as well. Positive thyroid hormones staining clearly indicates the thyroid origin of metastases.  相似文献   

14.
Thyroid peroxidase (TPO) and thyroglobulin (TG) represent two major glycoproteins of thyroid follicular cells performing biological functions such as iodination, transcytosis of thyroglobulin, and formation of thyroid hormones. They are involved in thyroid autoimmunity and thyroid inborn metabolic disorders. Studying these processes at a molecular level includes the determination of their precise intracellular distribution. An evaluation of the relative concentrations of TG and TPO in different subcellular compartments was carried out in stimulated human follicular cells using thin-frozen sections and the immunogold technique. It is documented that TG is transported from the endoplasmic reticulum and the Golgi apparatus to the follicular lumen by transport vesicles; most of it being present in the expanded endoplasmic reticulum throughout the cytoplasm. On the other hand, gold particles indicating TPO are adjacent to the membranes of the exocytotic pathway. They do not label the basolateral membrane but show the strongest density in the nuclear envelope and the apical membrane. The labeling density of TPO is about four times higher in the nuclear envelope than in the endoplasmic reticulum throughout the cytoplasm. In contrast, TG is concentrated three times higher in the rough endoplasmic reticulum throughout the cytoplasm than in the nuclear cisternae. Our results give the first quantitative evidence that TPO and TG are concentrated in different subcompartments of the endoplasmic reticulum. Because previous studies demonstrated the nuclear envelope as the site where the synthesis of endogenous peroxidase (Br?kelmann, J., D. W. Fawcett, Biol. Reprod. 1, 59-71 (1969)) begins, we suggest that synthesis of these functionally related proteins happens in specialized parts of the endoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The thyroid gland has an exceptionally high selenium content, even during selenium deficiency. At least 11 selenoproteins are expressed, which may be involved in the protection of the gland against the high amounts of H2O2 produced during thyroid hormone biosynthesis. As determined here by in situ hybridization and Northern blotting experiments, glutathione peroxidases (GPx) 1 and 4 and selenoprotein P were moderately expressed, occurring selectively in the follicular cells and in leukocytes of germinal follicles of thyroids affected by Hashimoto's thyroiditis. Selenoprotein 15 was only marginally expressed and distributed over all cell types. GPx3 mRNA was exclusively localized to the thyrocytes, showed the highest expression levels and was down-regulated in 5 of 6 thyroid cancer samples as compared to matched normal controls. GPx3 could be extracted from thyroidal colloid by incubation with 0.5% sodium dodecyl sulfate indicating that this enzyme is (i) secreted into the follicular lumen and (ii) loosely attached to the colloidal thyroglobulin. These findings are consistent with a role of selenoproteins in the protection of the thyroid from possible damage by H2O2. Particularly, GPx3 might use excess H2O2 and catalyze the polymerization of thyroglobulin to the highly cross-linked storage form present in the colloid.  相似文献   

16.
The mechanism of follicular lumen differentiation during thyroid gland morphogenesis in vertebrate classes is still unclear and the current knowledge regarding the origin and the mechanism of follicular lumen formation during thyroid differentiation in reptiles is especially poor. The present study reports on an ultrastructural investigation of thyroid follicle formation and follicular lumen differentiation in grass snake (Natrix natrix L.) embryos. The results of this study show that the earliest morphogenesis of the presumptive thyroid follicles in grass snake embryos appears to be similar to that described in embryos of other vertebrate classes; however, differences appeared during the later stages of its differentiation when the follicular lumen was formed. The follicular lumen in grass snake embryos was differentiated by cavitation; during thyroid follicle formation, a population of centrally located cells was cleared through apoptosis to form the lumen. This manner of follicular lumen differentiation indicates that it has an extracellular origin. It cannot be excluded that other types of programmed cell death also occur during follicular lumen formation in this snake species.  相似文献   

17.
Thyroid hormone is an essential regulator of developmental growth and metabolism in vertebrates. Iodine is a necessary constituent of thyroid hormone. Due to the scarcity and uneven distribution of iodine on the Earth's crust, the structure of the thyroid gland is adjusted to collect and store this element in order to secure a continuous supply of thyroid hormone throughout life. Still, disease resulting from hypothyroidism due to iodine deficiency is a global health problem, illustrating the great biological significance that iodine saving mechanisms have evolved. Iodide is accumulated together with prohormone (thyroglobulin) in the lumen of the thyroid follicles. The rate-limiting step of this transport is the sodium/iodide symporter located in the basolateral plasma membrane of the thyroid follicular cells. Iodide is also transferred across the apical plasma membrane into the lumen where hormonogenesis takes place. In this review, recent progress in the understanding of transepithelial iodide transport in the thyroid is summarized.  相似文献   

18.
A light microscopic quantitative analysis was performed on normal and jimpy male mice for studying the difference between the structures of the thyroid glands of the two animals. The results of this analysis showed that the thyroid gland of the normal mice consisted of numerous homogenous round follicles with cuboidal follicular cells, separated by thin interlobular and interfollicular connective tissue and a few adipose tissue. The thyroid gland of jimpy mice consisted of a few, small follicles surrounded by columnar follicular cells and intraepithelial capillaries, separated by thick connective tissue and abundant adipose tissue. The number of thyroid follicles are significantly less in the jimpy mice than in the normal mice. Another striking difference is that almost every follicular cell surrounding the follicular lumen of jimpy mice is accompanied by an intraepithelial capillary. In addition, the ratio of the number of intraepithelial capillaries to the number of the thyroid follicular cells are significantly higher in the jimpy mice than in the normal mice. The S-follicles or ultimobranchial cysts of the thyroid gland are well developed in the jimpy mice. The parafollicular cells are normal in appearance. Morphological evidence suggested that the thyroid follicular cells of the jimpy mice are very active in the transport, synthesis and release of thyroglobulin, and secretion of thyroid hormones. But owing to the significantly decreased number of thyroid follicles, the inadequate secretion of the thyroid hormones result in the hypothyroidism and the hypomyelination of the jimpy mice.  相似文献   

19.
OBJECTIVE: The case of a 60-year-old male patient with follicular thyroid cancer who developed a pituitary mass proved to be a metastasis from thyroid cancer. METHODS: Assessment with whole-body scan, ultrasound, computed tomography and thyroglobulin measurements. RESULTS: Despite surgery and repeated doses of radioiodine, the patient developed diplopia and ptosis of the right eyelid, along with increasing thyroglobulin levels. A pituitary mass was discovered, with no signs of pituitary deficiency. The mass was removed and found to consist of neoplastic cells immunohistochemically positive to thyroglobulin. CONCLUSIONS: Distant metastases may develop in cases of follicular thyroid carcinoma, even after repeated doses of (131)I. Metastatic follicular thyroid carcinoma to the pituitary is a rare entity.  相似文献   

20.
Reactive oxygen species (ROS) are involved in many pathological processes through modifications of structure and activity of proteins. ROS also participate in physiological pathways such as thyroid hormone biosynthesis, which proceeds through oxidation of the prothyroid hormone (thyroglobulin, Tg) and iodide. Regarding the colloidal insoluble multimerized Tg (m-Tg), which bears dityrosine bridges and is present in the follicular lumen, a mild oxidative system generated different soluble forms of Tg, more or less compacted by hydrophobic associations, and linked with Grp78 and Grp94. In vitro, the combined action of ROS and PDI, in the presence of free glutathione (reduced/oxidized), increased the solubility of this misassembled Tg and partially restored the ability of Tg to synthesize hormones. Our results show that protein chaperones escape from the ER and are involved with ROS in thyroid hormone synthesis. Therefore, we propose a model of roles of m-Tg in the follicular lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号