首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
Two hybridomas producing monoclonal antibodies reactive with natural killer cells were selected after fusion of 129 anti-C57BL/6 immune spleen cells with P3X63-Ag8.653 myeloma cells. Treatment of normal or stimulated cells with the 4LO3311 or the 4LO439 mAb and rabbit complement inhibited natural killer and antibody-dependent cellular cytotoxicities, whereas cell lysis mediated by natural cytotoxic cells, cytotoxic T lymphocytes, or activated macrophages was unaffected. Lymphokine-activated killer activity was reduced after complement-mediated treatment of interleukin-2-stimulated spleen cells with the 4LO3311 mAb but not after treatment with the 4LO439 mAb. Similar treatment of spleen cells with either mAb had no effect on the mitogen-induced proliferation of T and B lymphocytes and did not alter the frequency of antibody plaque-forming cells in immune spleen cell suspensions. The 4LO3311 and 4LO439 mAbs thus appear to be specific for NK cells and their progeny. Flow cytometry analysis confirmed that 4LO3311+ and 4LO439+ cells are phenotypically identical to NK-1.1+ cells. The epitope recognized by the 4LO3311 mAb has the same strain distribution as the NK-2.1 alloantigen previously detected with NZB anti-BALB/c antiserum, whereas the 4LO439 mAb appears to identify a new NK cell marker exclusively expressed in mice of C57BL lineage. The relationship of the molecules detected with either the 4LO3311 or the 4LO439 mAb to polymorphic antigens of the Ly series is discussed.  相似文献   

2.
Cells bearing the NK-specific marker NK-1.1 were purified from mouse spleens by utilizing a monoclonal anti-NK-1.1 antibody and cell sorting. In normal adult mice, all of the splenic NK activity against YAC-1 cells was found in the NK-1.1+ fraction, whereas NK-1.1- cells were depleted of NK activity. The NK activity of sorted NK-1.1+ cells was enriched 15- to 30-fold over unfractionated spleen cells. Light and electron microscopic studies of purified NK-1.1+ cells showed a homogeneous population of cells, each containing one to four cytoplasmic granules. Mice whose bone marrow has been destroyed by chronic exposure to 17-beta-estradiol have very low NK activity. However, spleen cells of estradiol-treated mice contained a normal frequency of NK-1.1+ cells which bound to YAC-1 cells, but failed to lyse them even after purification and subsequent exposure to interferon-alpha/beta in vitro. It appears, therefore, that in the absence of intact bone marrow, NK-1.1+ cells may be arrested in a nonlytic and interferon-unresponsive state. Spleens of neonatal mice which have low NK activity were analyzed to ascertain whether immature NK-1.1+ cells, similar to those found in estradiol-treated mice, could be demonstrated. Spleens of 8- to 9-day-old mice also contained NK-1.1+ cells which had very low NK activity even after purification. Sorted NK-1.1+ cells were examined for cytotoxicity in mice whose NK activity was suppressed by pretreatment with Corynebacterium parvum (-15 days). In contrast to cells from estradiol-treated and neonatal mice, NK-1.1+ from mice treated with C. parvum had normal functional activity. Similarly, although NK activity of unfractionated bone marrow cells is low, sorted NK-1.1+ cells were greatly enriched for lytic activity. Thus, we conclude that cell sorting with monoclonal anti-NK-1.1 antibody provides a powerful tool for examining the mechanisms underlying various states of low NK activity, and there exist NK-1.1+, nonlytic, interferon-unresponsive cells which apparently require an intact marrow microenvironment for differentiation into mature, lytic NK cells.  相似文献   

3.
Our laboratory has recently identified a novel Ag, LGL-1, that is expressed on a major population of mouse NK cells. Two color immunofluorescence analysis has demonstrated that spleen cells consist of two major subsets of NK cells. We have identified an NK-1.1+/LGL-1+ subset that consists of 50% of the total NK cells and an NK-1.1+/LGL-1- subset comprising the remaining 50%. Because numerous reports have identified NK cells as the major cell type mediating lymphokine-activated killing (LAK), the NK-1.1+/LGL-1+ and NK-1.1+/LGL-1- subsets were examined for their contribution toward LAK generation, as defined by their ability to lyse P815 tumor targets. Antibody plus C depletion experiments with the use of anti-LGL-1 indicated that LGL-1+ cells were not found on LAK precursor or effector cells. Two-color cell sorting experiments were also performed to separate freshly isolated NK-1.1+/LGL-1+ spleen cells from the NK-1.1+/LGL-1- subset. It was found that the vast majority of LAK activity (greater than 95%) is derived from the NK-1.1+/LGL-1- cells. Cell sorting of LAK effectors also demonstrated that the NK-1.1+/LGL-1- cells mediated the vast majority of lysis against P815 targets. Similar results were obtained when NK cell subsets were analyzed for their contribution toward ADCC. These findings may prove important in understanding and further elucidating the contribution of NK cells to the LAK phenomenon. Our data also indicates that subsets of NK cells exist that may function differently in response to stimulation by various lymphokines and cytokines.  相似文献   

4.
The NK-1.1(-) mouse: a model to study differentiation of murine NK cells   总被引:19,自引:0,他引:19  
The NK-1.1(-) mouse was constructed by weekly injections of monoclonal anti-NK-1.1 antibody from birth through adulthood. Spleen cells from these mice have decreased NK-1.1+ cells and null (Thy-1- and B220-) cells. Their splenic NK activity to YAC targets was low and was not enhanced by IFN-alpha or IFN-beta. Bone marrow (BM) of these NK-1.1(-) mice have normal precursors to NK cells: 1) NK activity could be generated from NK-1.1(-) BM cells cultured in rIL 2 for 5 to 6 days. These cultured BM cells expressed Qa-5, Thy-1, AsGm-1, and NK-1.1 antigens. The precursor cells of these BM cytotoxic cells are NK-1.1-; 2) transfer of BM cells from the NK-1.1(-) mice reconstituted the NK activity of irradiated, NK-depleted recipients. Lymphokine-activated killer cells could also be generated from spleens of these NK-1.1(-) mice. Therefore, the NK-1.1(-) mice were specifically depleted of mature cytotoxic NK cells, but not the NK-1.1- precursors of NK cells. This mouse model is valuable to study ontogeny and physiologic relevance of NK cells.  相似文献   

5.
6.
NK-1.1 antiserum - (BALB/c X C3H)F1 anti-CE - and NK-2.1 antiserum - NZB anti-BALB/c - detect genetically distinct alloantigens on C57BL/6 natural killer (NK) cells. We have analyzed whether these two alloantigens are associated with functional subsets of NK cells. For this study, nylon wool nonadherent C57BL/6 spleen cells (SC) were treated with complement (C) and NK-1.1 or NK-2.1 antisera and then tested for NK activity against a panel of tumor targets in 6- and 19-hour 51Cr release assays. The NK activity against the prototype NK target YAC-1 was reduced equally by both antisera. Similar reductions by both antisera were also observed when SC were tested against another murine lymphoma target, L5178c127v, against the C57BL/6 melanoma B16, and against the human liver cell line Chang. In contrast, NK activity to the lymphoma FBL-3 and the human erythroleukemia K562 was significantly reduced in SC treated with NK-2.1 antiserum and C, whereas SC treated with NK-1.1 antiserum and C showed either less reduction or no reduction in activity against these two cell lines. With two other targets, E male G2 and RBL-5, neither serum produced significant depletion of activity, Analysis of SC indirectly labeled with either NK-1.1 or NK-2.1 antiserum and fluorescein-labeled goat anti-mouse Ig, however, did not detect significant differences between NK-1+ and NK-2+ cell populations.  相似文献   

7.
Normal murine splenocytes cultured with IL2 for 6, but not 3, days contained an NK1.1+, CD3+ lytically active subset. These lymphocytes were not derived from NK1.1+ precursors since NK1.1+ cells, purified by flow cytometry, failed to express CD3, as determined by the 145-2C11 mAb, on their surface even after culture with IL2 for 6 days. Instead, the precursors of the NK1.1+, CD3+ effectors were contained in a B cell-depleted CD4-, CD8-, NK1.1- splenic subset. Freshly obtained CD4-, CD8-, NK1.1- splenocytes were mostly CD3+, CD5+, B220-, had no spontaneous lytic activity against YAC-1, and were unable to mediate anti-CD3 directed lysis against FcR-bearing target cells. Culture of the CD4-, CD8-, NK1.1- splenocytes with IL2, for 6 days, resulted in the development of NK1.1+, CD3+, B220+ effectors 40% of which were CD5dim and 20-25% of which expressed TCR-V beta 8 as determined by the F23.1 mAb. The acquisition of NK1.1, B220, and lytic activity by this triple-negative subset was readily inhibited by cyclosporine A (CSA). On the other hand, CSA had no effect on the acquisition of B220 or lytic activity by NK1.1+ precursors obtained by flow cytometry sorting. Moreover, all of the NK1.1+ cells generated by IL2 culture of splenocytes obtained from mice depleted of NK1.1+ lymphocytes (by in vivo injection of anti-NK1.1 mAb) coexpressed CD3 on their surface and were thus distinct from classical NK cells. These findings demonstrate that splenic NK cells do not express or acquire CD3; that the NK1.1+, CD3+ LAK effectors are derived from an NK1.1- precursor; and that CSA is exquisitely selective in its inhibitory effect on LAK generation.  相似文献   

8.
9.
The anti-NK1.1 antibody produced by PK136 hybridoma cell line administered subcutaneously to SCID mice effectively decreased the level of peripheral blood NK cells and weight of the spleen for 3-4 days. The antibody treatment did not harm the general state of the animal, and may be practically applied in xenograft experiments.  相似文献   

10.
NK cells lyse certain tumor cell targets but the effector cell surface molecules responsible for this reactivity remain uncertain. The allotypic NK1.1 Ag is the most specific serologic marker on murine cells that display non-MHC-restricted cytolysis of tumor cell targets, but no function has been previously ascribed to this Ag. In this report, we demonstrate that, in the presence of a mAb specific for the NK1.1 Ag (mAb PK136), freshly isolated and IL-2-activated NK cells from C57BL/6 mice can be induced to lyse an otherwise resistant target cell, Daudi. This phenomenon is effector and mAb specific because NK cells derived from BALB/c mice do not express the NK1.1 Ag and cannot be triggered by mAb PK136. We demonstrate that IL-2 activated but not freshly isolated NK cells express the Ly-6 and VEA Ag, originally described as T cell activation Ag. Moreover, mAb specific for Ly-6 and VEA induce target cell lysis by IL-2 activated but not freshly isolated NK cells. These mAb effects are specific, concentration dependent, and display kinetics that are similar to spontaneous cytolysis of NK-sensitive targets. The Fc portion of the activating antibodies and only FcR bearing target cells participate in mAb-induced activation, consistent with the mechanism of redirected lysis. Finally, analysis of Daudi cells transfected with beta 2-microglobulin gene demonstrate that the expression of MHC class I Ag by the target cell does not affect its sensitivity to mAb-induced lysis by NK cells. These data demonstrate that the NK1.1 Ag is functionally active on both freshly isolated and IL-2-activated NK cells and that IL-2-activated NK cells possess additional pathways of specific stimulation.  相似文献   

11.
Using a new mAb, 4H12, that recognizes a plasma membrane-associated Ag on granulated metrial gland cells, we identified subsets of murine NK cells in spleen cell-derived adherent lymphokine activated killer cells and in the spleens of neonatal and pregnant mice. In spleen cell adherent-lymphokine-activated killer cultures, 4H12 Ag was detected on a small subset of cells after 7 days culture and expression increased with time to 70% of the cells after 21 days culture. 4H12+ cells were large (up to 70 microns) and granular. The Ag was also detected in the cytoplasmic granules of some, but not all 4H12 surface positive cells. Coexpression studies indicated 4H12+ cells were predominantly positive for the NK1.1 and ASGM1 Ag, negative for the MAC-1 and F4/80 Ag, and +/- for the LGL-1 and CD3 Ag. Subsets of 4H12+/-, LGL-1+/- exhibited morphologic characteristics restricted to specific phenotypic subsets. The 4H12-/LGL-1+ subset was shown to contain the smallest, least granular cells, whereas the 4H12+/LGL-1+/- subsets contained the largest and most granular cells. Although 4H12 expression was negligible in the spleens of normal adult mice, spleen cells of neonatal and pregnant mice contained subsets of NK1.1+ cells that coexpressed 4H12. The 4H12+/NK1.1+ and 4H12-/NK1.1+ subsets displayed differential levels of NK1.1 expression. 4H12+ NK cells were NK1.1 low to high, whereas 4H12- NK cells were NK1.1 high only. The functional significance of subsets of NK cells in IL-2 culture and in the spleens of neonatal and pregnant mice remains to be elucidated.  相似文献   

12.
Using anti-Nk-1.1 serum, the alloantiserum specific for murine natural killer (NK) cells, we followed the ontogenetic development of Nk-1+ cells in fetal thymus, liver, and spleen. A transient population of Nk-1+ cells in fetal thymus was observed on day 14 but not on day 16 of gestation. On day 16 of gestation, Nk-1+ cells were detected only in liver and spleen. The proportion of Nk-1+ cells in spleen remained high (20 to 30%) at birth and persisted until 2 to 3 wk old. The Nk-1+ cells in "baby" (1 to 2 wk old) spleen bound to YAC cells but failed to lyse them in 51Cr-release assay. Upon induction with interferon (IF), the proportion of Nk-1+ cells increased, but the lytic activity remained low, suggesting that the "baby" NK-1+ cells are immature in lytic function. In old mice (12 to 14 mo), Nk-1+ cells were also detectable, even though NK activities were lower compared with those of the young adult (6 to 8 wk old) mice. The Nk-1+ cells of old mice were readily induced by IF to exhibit activities, and the induced NK cells were Nk-1+. We have thus established Nk-1.1 antigen as an early hemopoietic differentiation antigen. Splenic Nk-1- cells could be induce by IF to become NK-1+ cells, which could be inactive or active in NK assays, dependent on the age of the mice.  相似文献   

13.
NK1.1+ T cells represent a specialized T cell subset specific for CD1d, a nonclassical MHC class I-restricting element. They are believed to function as regulatory T cells. NK1.1+ T cell development depends on interactions with CD1d molecules presented by hematopoietic cells rather than thymic epithelial cells. NK1.1+ T cells are found in the thymus as well as in peripheral organs such as the liver, spleen, and bone marrow. The site of development of peripheral NK1.1+ T cells is controversial, as is the nature of the CD1d-expressing cell that selects them. With the use of nude mice, thymectomized mice reconstituted with fetal liver cells, and thymus-grafted mice, we provide direct evidence that NK1.1+ T cells in the liver are thymus dependent and can arise in the thymus from fetal liver precursor cells. We show that the class I+ (CD1d+) cell type necessary to select NK1.1+ T cells can originate from TCRalpha-/- precursors but not from TCRbeta-/- precursors, indicating that the selecting cell is a CD4+CD8+ thymocyte. 5-Bromo-2'-deoxyuridine-labeling experiments suggest that the thymic NK1.1+ T cell population arises from proliferating precursor cells, but is a mostly sessile population that turns over very slowly. Since liver NK1.1+ T cells incorporate 5-bromo-2'-deoxyuridine more rapidly than thymic NK1.1+ T cells, it appears that liver NK1.1+ T cells either represent a subset of thymic NK1.1+ T cells or are induced to proliferate after having left the thymus. The results indicate that NK1.1+ T cells, like conventional T cells, arise in the thymus where they are selected by interactions with restricting molecules.  相似文献   

14.
NK T cells are an unusual subset of T lymphocytes. They express NK1. 1 Ag, are CD1 restricted, and highly skewed toward Vbeta8 for their TCR usage. They express the unique potential to produce large amounts of IL-4 and IFN-gamma immediately upon TCR cross-linking. We previously showed in the thymus that the NK T subset requires IL-7 for its functional maturation. In this study, we analyzed whether IL-7 was capable of regulating the production of IL-4 and IFN-gamma by the discrete NK T subset of CD4+ cells in the periphery. Two hours after injection of IL-7 into mice, or after a 4-h exposure to IL-7 in vitro, IL-4 production by CD4+ cells in response to anti-TCR-alphabeta is markedly increased. In contrast, IFN-gamma production remains essentially unchanged. In beta2-microglobulin- and CD1-deficient mice, which lack NK T cells, IL-7 treatment does not reestablish normal levels of IL-4 by CD4+ T cells. Moreover, we observe that in wild-type mice, the memory phenotype (CD62L-CD44+) CD4+ T cells responsible for IL-4 production are not only NK1.1+ cells, but also NK1.1- cells. This NK1.1-IL-4-producing subset shares three important characteristics with NK T cells: 1) Vbeta8 skewing; 2) CD1 restriction as demonstrated by their absence in CD1-deficient mice and relative overexpression in MHC II null mice; 3) sensitivity to IL-7 in terms of IL-4 production. In conclusion, the present study provides evidence that CD4+MHC class I-like-dependent T cell populations include not only NK1.1+ cells, but also NK1.1- cells, and that these two subsets are biased toward IL-4 production by IL-7.  相似文献   

15.
16.
The resistance of mice to lethal infection by murine CMV (MCMV) is under complex host genetic control with contributions from both H-2 and non-H-2 genes. We have previously shown that an autosomal, non-MHC encoded gene, Cmv-1, controls MCMV replication in the spleen. We have investigated the mechanism by which the Cmv-1 resistance gene confers protection against MCMV infection. Using H-2 compatible irradiation bone marrow chimeras, the enhanced resistance to MCMV infection that is associated with the Cmv-1l allele in the C57BL background was shown to be mediated by an irradiation-sensitive bone marrow-derived cell population, or a factor produced by these cells. The lack of correlation between serum IFN titers and the strain distribution pattern of Cmv-1 in CXB recombinant inbred mouse strains suggests that IFN does not mediate resistance conferred by this gene. Similarly, the lack of effect of in vivo depletion of mature CD4+ and CD8+ T cells on virus replication in C57BL/6J mice indicates that T cells are unlikely to be involved. In contrast, in vivo depletion of NK cells by injection of the anti-NK1.1 mAb PK136 abrogated restricted splenic virus replication in C57BL/6J----BALB.B chimeric mice and in the Cmv-1l CXB strains. These data indicate that the effect of the Cmv-1 gene is mediated by NK cells. The significant augmentation in NK cell activity after MCMV infection of the susceptible Cmv-1h strains (BALB/cBy), CXBG/By, CXBH/By, CXBI/By, and CXBK/By) indicates the existence in these mice of NK cells that are functionally and phenotypically distinct from those in Cmv-1l strains. NK cells present in the Cmv-1h strains are unable to restrict efficiently splenic MCMV replication in vivo, possibly due to a lack of specificity for virus-infected target cells. Finally, flow cytometric analysis of NK1-1 expression in CXB and BXD RI mice together with MCMV replication studies in the BXD RI strains indicate that Cmv-1 is closely linked to NK1.1 and other loci that reside on a distal segment of murine chromosome 6 in a region that has recently been defined as the natural killer complex.  相似文献   

17.
Inbred C57BL/6 (B6) mice which had received an inoculation of allogeneic spleen cells showed remarkable antitumor activity against syngeneic tumor challenge with B16 melanoma cells 3 days after the allogeneic cell inoculation. This antitumor activity was not specific to the inoculated alloantigen, since the challenging B16 cells are syngeneic to B6 mice and since it was induced by BALB/c spleen cells as well as C3H/He spleen cells. The antitumor activity was sensitive to an in vivo treatment with anti-asialo GM1 (AGM1) antiserum or anti-Thy.1 monoclonal antibody (mAb) just before the tumor challenge and was resistant to an in vivo treatment with anti-CD8 (Ly. 2) mAb. These results suggest that AGM1+Thy.1+CD8– activated natural killer (NK) cells were generated by alloantigen inoculation and took an important part in the antitumor effect of the alloantigen inoculation.  相似文献   

18.
The rejection of Hh-1 incompatible bone marrow cells in irradiated mice is mediated by NK cells and is genetically regulated. We tested the role of the NK-specific gene, NK1.1, in regulating the rejection of allogeneic bone marrow cell grafts. NK1.1+ mice, that are known to display strong resistance against Hh-1 incompatible grafts, were crossed to H-2/Hh-1 identical NK1.1-, poor responder mice, and the progeny were backcrossed to the poor responder parent. The segregating mice were individually typed for their expression of NK1.1 and the ability to resist Hh-1 incompatible bone marrow cells (BMC). A strong correlation was noted between expression of NK1.1 and rejection of H-2d/Hh-1d BMC. Our results support the idea that NK1.1 is one of the genes responsible for strong resistance to Hh-1d (determinant 2) but not for Hh-1j (determinant 3) BMC grafts. We suggest that the NK1.1 molecule functions as an accessory molecule in the cellular interactions involving the recognition of Hh-1 determinants.  相似文献   

19.
Granulated metrial gland (GMG) cells, a population of morphologically distinct, bone marrow-derived cells in murine decidua that react with mAb 4H12, are shown in this report to express NK-specific Ag and to become cytolytic to the NK cell target YAC-1 when cultured in the lymphokine IL-2. When 1-mm3 explants of 8-day decidual tissue were cultured with IL-2, large numbers of 4H12+ GMG cells migrated out of the tissue. Migration was dependent on the amount of IL-2 used. This explant technique was used to isolate a pure population of GMG cells. The migratory activated GMG cells were phenotypically 4H12+, NK1.1+, LGL-1+/-, CD3-, and MAC-1-. Furthermore, the IL-2-activated GMG cells killed YAC-1 but not P815 cells in a 4-h 51Cr-release cytotoxicity assay. 4H12+ GMG cells from collagenase-digested decidual tissue also were analyzed for the presence of NK lineage Ag by flow cytometry and shown to coexpress the NK-associated Ag NK1.1 and ASGM1 but not the T cell Ag CD3 or macrophage Ag MAC-1 or F4/80. GMG cells isolated by collagenase digestion did not express LGL-1, an Ag associated with lytic NK cells. Our results demonstrate that GMG cells express Ag and functions characteristic of NK cells, and thus GMG cells can be assigned to the NK lineage. The possible relevance of NK cells at implantation sites is discussed.  相似文献   

20.
NK1.1+ T cells in the mouse thymus and bone marrow were compared because some marrow NK1.1+ T cells have been reported to be extrathymically derived. Almost all NK1.1+ T cells in the thymus were depleted in the CD1-/-, beta2m-/-, and Jalpha281-/- mice as compared with wild-type mice. CD8+NK1.1+ T cells were not clearly detected, even in the wild-type mice. In bone marrow from the wild-type mice, CD8+NK1.1+ T cells were easily detected, about twice as numerous as CD4+NK1.1+ T cells, and were similar in number to CD4-CD8-NK1.1+ T cells. All three marrow NK1.1+ T cell subsets were reduced about 4-fold in CD1-/- mice. No reduction was observed in CD8+NK1.1+ T cells in the bone marrow of Jalpha281-/- mice, but marrow CD8+NK1.1+ T cells were markedly depleted in beta2m-/- mice. All NK1.1+ T cell subsets in the marrow of wild-type mice produced high levels of IFN-gamma, IL-4, and IL-10. Although the numbers of marrow CD4-CD8-NK1.1+ T cells in beta2m-/- and Jalpha281-/- mice were similar to those in wild-type mice, these cells had a Th1-like pattern (high IFN-gamma, and low IL-4 and IL-10). In conclusion, the large majority of NK1.1+ T cells in the bone marrow are CD1 dependent. Marrow NK1.1+ T cells include CD8+, Valpha14-Jalpha281-, and beta2m-independent subsets that are not clearly detected in the thymus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号