首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asthma and chronic obstructive pulmonary disease remain a global health problem, with increasing morbidity and mortality. Despite differences in the causal agents, both diseases exhibit various degrees of inflammatory changes, structural alterations of the airways leading to airflow limitation. The existence of transient disease phenotypes which overlap both diseases and which progressively decline the lung function has complicated the search for an effective therapy. Important characteristics of chronic airway diseases include airway and vascular remodeling, of which the molecular mechanisms are complex and poorly understood. Recently, we and others have shown that airway smooth muscle (ASM) cells are not only structural and contractile components of airways, rather they bear capabilities of producing large number of pro-inflammatory and mitogenic factors. Increase in size and number of blood vessels both inside and outside the smooth muscle layer as well as hyperemia of bronchial vasculature are contributing factors in airway wall remodeling in patients with chronic airway diseases, proposing for the ongoing mechanisms like angiogenesis and vascular dilatation. We believe that vascular changes directly add to the airway narrowing and hyper-responsiveness by exudation and transudation of proinflammatory mediators, cytokines and growth factors; facilitating trafficking of inflammatory cells; causing oedema of the airway wall and promoting ASM accumulation. One of the key regulators of angiogenesis, vascular endothelial growth factor in concerted action with other endothelial mitogens play pivotal role in regulating bronchial angiogenesis. In this review article we address recent advances in pulmonary angiogenesis and remodelling that contribute in the pathogenesis of chronic airway diseases.  相似文献   

2.
We evaluated the mechanical properties of the airways sequentially from the glottis toward the main bronchi in 10 normal subjects. Plots of airway cross-sectional area vs. lung volume, measured during inspiration and expiration, were used to determine the relative magnitude of the airways vs. parenchymal hysteresis. Airway cross-sectional area was measured by means of the acoustic reflection technique. We found that the hysteresis of the proximal part of the trachea was greater than that of the lung parenchyma, whereas the hysteresis of the distal trachea and subcarinal segments of the airways was smaller than that of the lung parenchyma. The transition zone between the proximal and the more distal airway properties occurred 8-26 cm distal to the glottis. This transition zone was reproducible in its location on repeated testing in each subject but varied among subjects. To the extent that relative hysteresis of the airways depends on bronchomotor tone, our findings suggest that the bronchomotor tone is inhomogeneous, being maximal at the proximal part of the trachea and gradually decreasing toward the more distal trachea and subcarinal airway segments.  相似文献   

3.
The airway smooth muscle (ASM) has been typically described as a contractile tissue, responding to neurotransmitters and inflammatory mediators. However, it has recently been recognized that ASM cells can also secrete cytokines and chemokines and express cell adhesion molecules that are important for the perpetuation and modulation of airway inflammation. Recent progress has revealed the importance of IgE Fc receptors in stimulating and modulating the function of these cells. In particular, the high-affinity receptor for IgE (FcepsilonRI) has been identified in primary human ASM cells in vitro and in vivo within bronchial biopsies of atopic asthmatic individuals. Moreover, activation of this receptor has been found to induce marked increases in the intracellular calcium concentrations and T helper 2 cytokines and chemokines release. This and other evidence discussed in this review provide an emerging view of FcepsilonR/IgE network as a critical modulator of ASM cell function in allergic asthma.  相似文献   

4.
To study the postnatal maturation of vagal control of airway muscle tone, we determined the effects of vagotomy and supramaximal vagal stimulation on the resistance of the respiratory system in eight newborn and seven 6-wk-old piglets. Because the lung periphery has distinctive responses to cholinergic agonists and a lower density of vagal fibers and cholinergic receptors than the central airways, we partitioned the respiratory resistance of the piglets between central airways (Rc) and peripheral airways and lung tissue (Rp) with bronchial catheters inserted in a retrograde manner. The piglets were anesthetized with alpha-chloralose and ventilated with positive airway pressure. Vagotomy did not change Rc or Rp in either the newborn or the 6-wk-old piglets. Vagal stimulation, on the other hand, increased both Rc (median increase 53% in the newborn and 72% in the 6-wk-old piglets) and Rp (54 and 42%, respectively). At all states of vagal tone, Rp increased as the lungs were inflated, suggesting a large contribution of tissue viscoelasticity to this resistance. Our results demonstrate that vagal bronchomotor tone is absent during mechanical ventilation with positive pressure in the developing piglet. However, vagal innervation of both central airways and tissue contractile elements is functionally competent at the time of birth in this species.  相似文献   

5.
《Cytokine》2013,61(3):843-848
Measuring T-cell production of intracellular cytokines by flow cytometry enables specific monitoring of airway inflammation and response to therapies in chronic lung diseases including chronic obstructive pulmonary disease (COPD). We have previously shown that T cells in the airways of ex- and current- smoker COPD patients and healthy smokers produce increased T-cell pro-inflammatory cytokines IFNγ and TNFα versus healthy controls. However, we could not differentiate between COPD groups and smokers due to a high degree of inter-patient variability. To address this limitation, we hypothesized that intraepithelial T cells obtained from brushings of trachea may serve as an ideal intra-patient control compared with cells obtained from left and right bronchi. Production of intracellular cytokines by intraepithelial T-cells obtained from trachea and right and left bronchi from 26 individuals with COPD (16 with GOLD I and 10 with GOLD II-III disease), 11 healthy controls and 8 smokers was measured by flow cytometry.There was a significant increase in intraepithelial T-cell IFNγ and TNFα in both right and left bronchi of GOLD II-III COPD patients compared to cells obtained from the trachea. There were no changes in T cell pro-inflammatory cytokines between the bronchi and trachea from control subjects, GOLD I COPD patients or healthy smokers. There was a significant negative correlation between increased intraepithelial IFNγ and TNFα in bronchial brushing T-cells compared with tracheal T-cells, and compared with FEV1. Monitoring intracellular intra-epithelial T-cell cytokine production in bronchial brushings using autologous tracheal brushings as controls provides improves the sensitivity of the technique. Therapeutic targeting of these pro-inflammatory cytokines and assessing the effects of drugs on immune reactivity has the potential to reduce lung inflammation caused by intra-epithelial T cells in COPD.  相似文献   

6.
Chronic contractile activation, or tone, in asthma coupled with continuous stretching due to breathing may be involved in altering the contractile function of airway smooth muscle (ASM). Previously, we (11) showed that cytoskeletal remodeling and stiffening responses to acute (2 h) localized stresses were modulated by the level of contractile activation of ASM. Here, we investigated if altered contractility in response to chronic mechanical strain was dependent on repeated modulation of contractile tone. Cultured human ASM cells received 5% cyclic (0.3 Hz), predominantly uniaxial strain for 5 days, with once-daily dosing of either sham, forskolin, carbachol, or histamine to alter tone. Stiffness, contractility (KCl), and "relaxability" (forskolin) were then measured as was cell alignment, myosin light-chain phosphorylation (pMLC), and myosin light-chain kinase (MLCK) content. Cells became aligned and baseline stiffness increased with strain, but repeated lowering of tone inhibited both effects (P < 0.05). Strain also reversed a negative tone-modulation dependence of MLCK, observed in static conditions in agreement with previous reports, with strain and tone together increasing both MLCK and pMLC. Furthermore, contractility increased 176% (SE 59) with repeated tone elevation. These findings indicate that with strain, and not without, repeated tone elevation promoted contractile function through changes in cytoskeletal organization and increased contractile protein. The ability of repeated contractile activation to increase contractility, but only with mechanical stretching, suggests a novel mechanism for increased ASM contractility in asthma and for the role of continuous bronchodilator and corticosteroid therapy in reversing airway hyperresponsiveness.  相似文献   

7.
Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin, laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor (FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with these diseases.  相似文献   

8.
We studied the optimal airway caliber for minimizing the work rate of breathing in the lung (W) with different bronchomotor tones in six normal subjects. The inhalation of methacholine contracted airway smooth muscle, and the inhalation of salbutamol relaxed it. To calculate W at a given alveolar ventilation (VA), anatomical dead space (VDanat), pulmonary resistance (RL), and dynamic compliance were measured simultaneously, breath by breath, during various breathing maneuvers. VDanat increased and RL decreased with both increased breathing frequency and tidal volume, even at a given airway tone. This suggests that the airway caliber varied even at a given bronchomotor tone. The minimum W at a given VA increased in constricted airways, but there was no significant difference between control airways after saline inhalation and relaxed airways. It has been suggested that airway smooth muscle tones at both control and relaxed conditions bring W to a minimum and that the airway smooth muscle tone existing in the control state acts to keep the airway caliber optimal in order to minimize the W and stabilize the airway mechanics.  相似文献   

9.
Airway smooth muscle (ASM) cells are constantly under mechanical strain as the lung cyclically expands and deflates, and this stretch is now known to modulate the contractile function of ASM. However, depending on the experimental conditions, stretch is either beneficial or harmful limiting or enhancing contractile force generation, respectively. Stretch caused by a deep inspiration is known to be beneficial in limiting or reversing airway constriction in healthy individuals, and oscillatory stretch lowers contractile force and stiffness or lengthens muscle in excised airway tissue strips. Stretch in ASM culture has generally been reported to cause increased contractile function through increases in proliferation, contractile protein content, and organization of the cell cytoskeleton. Recent evidence indicates the type of stretch is critically important. Growing cells on flexible membranes where stretch is non-uniform and anisotropic leads to pro-contractile changes, whereas uniform biaxial stretch causes the opposite effects. Furthermore, the role of contractile tone might be important in modulating the response to mechanical stretch in cultured cells. This report will review the contrasting evidence for modulation of contractile function of ASM, both in vivo and in vitro, and summarize the recent evidence that mechanical stress applied either acutely within 2 h or chronically over 11 d is a potent stimulus for cytoskeletal remodelling and stiffening. We will also point to new data suggesting that perhaps some of the difference in response to stretch might lie with one of the fundamental differences in the ASM environment in asthma and in culture--the presence of elevated contractile tone.  相似文献   

10.
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.  相似文献   

11.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

12.
Arachidonic acid metabolites of the cyclooxygenase and lipoxygenase pathways have a variety of important lung functions. Recent observations indicate that cytochrome P-450 (P-450) monooxygenases are also expressed in the lung, localized to specific pulmonary cell types (e.g., epithelium, endothelium, and smooth muscle), and may modulate critical lung functions. This review summarizes recent data on the presence and biological activity of P-450-derived eicosanoids in the pulmonary vasculature and airways, including effects on pulmonary vascular and bronchial smooth muscle tone and airway epithelial ion transport. We hypothesize a number of potential functions of P-450-derived arachidonate metabolites in the lungs such as contribution to hypoxic pulmonary vasoconstriction, regulation of bronchomotor tone, control of the composition of airway lining fluid, and limitation of pulmonary inflammation. Finally, we describe a number of emerging technologies, including congenic and transgenic strains of experimental animals, P-450 isoform-specific inhibitors and inhibitory antibodies, eicosanoid analogs, and vectors for delivery of P-450 cDNAs and antisense oligonucleotides. These tools will facilitate further studies on the contribution of endogenously formed P-450 eicosanoid metabolites to lung function, under both normal and pathological conditions.  相似文献   

13.
Recently, bitter taste receptors (TAS2Rs) were found in the lung and act to relax airway smooth muscle (ASM) via intracellular Ca(2+) concentration signaling generated from restricted phospholipase C activation. As potential therapy, TAS2R agonists could be add-on treatment when patients fail to achieve adequate bronchodilation with chronic β-agonists. The β(2)-adrenergic receptor (β(2)AR) of ASM undergoes extensive functional desensitization. It remains unknown whether this desensitization affects TAS2R function, by cross talk at the receptors or distal common components in the relaxation machinery. We studied intracellular signaling and cell mechanics using isolated human ASM, mouse tracheal responses, and human bronchial responses to characterize TAS2R relaxation in the context of β(2)AR desensitization. In isolated human ASM, magnetic twisting cytometry revealed >90% loss of isoproterenol-promoted decrease in cell stiffness after 18-h exposure to albuterol. Under these same conditions of β(2)AR desensitization, the TAS2R agonist chloroquine relaxation response was unaffected. TAS2R-mediated stimulation of intracellular Ca(2+) concentration in human ASM was unaltered by albuterol pretreatment, in contrast to cAMP signaling, which was desensitized by >90%. In mouse trachea, β(2)AR desensitization by β-agonist amounted to 92 ± 6.0% (P < 0.001), while, under these same conditions, TAS2R desensitization was not significant (11 ± 3.5%). In human lung slices, chronic β-agonist exposure culminated in 64 ± 5.7% (P < 0.001) desensitization of β(2)AR-mediated dilation of carbachol-constricted airways that was reversed by chloroquine. We conclude that there is no evidence for physiologically relevant cross-desensitization of TAS2R-mediated ASM relaxation from chronic β-agonist treatment. These findings portend a favorable therapeutic profile for TAS2R agonists for the treatment of bronchospasm in asthma or chronic obstructive lung disease.  相似文献   

14.
In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.  相似文献   

15.
Human (h) airway smooth muscle (ASM) cells are important mediators of the inflammatory process observed in asthma and other respiratory diseases. We show here that primary hASM cells express liver X receptor (LXR; alpha and beta subtypes), an oxysterol-activated nuclear receptor that controls expression of genes involved in lipid and cholesterol homeostasis, and inflammation. LXR was functional as determined by transient assays using LXR-responsive reporter genes and by analysis of mRNA and protein expression of endogenous LXR target genes in cells exposed to LXR agonists. LXR activation induced expression of the ATP-binding cassette transporters ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein AI and high-density lipoprotein acceptors, pointing to a role for hASM cells in modulating cholesterol homeostasis in the airway. Under inflammatory conditions, hASM cells release a variety of chemokines and cytokines that contribute to inflammatory airway diseases. Activation of LXR inhibited the expression of multiple cytokines in response to proinflammatory mediators and blocked the release of both granulocyte macrophage colony-stimulating factor and granulocyte colony stimulating factor. LXR activation also inhibited proliferation of hASM cells and migration toward platelet-derived growth factor chemoattractant, two important processes that contribute to airway remodeling. Our findings reveal biological roles for LXR in ASM cells and suggest that modulation of LXR activity offers prospects for new therapeutic approaches in the treatment of asthma and other inflammatory respiratory diseases.  相似文献   

16.
Increased airway smooth muscle (ASM) mass is a major feature of airway remodeling in asthma and chronic obstructive pulmonary disease. Growth factors induce a proliferative ASM phenotype, characterized by an increased proliferative state and a decreased contractile protein expression, reducing contractility of the muscle. Transforming growth factor-β-activated kinase 1 (TAK1), a mitogen-activated protein kinase kinase kinase, is a key enzyme in proinflammatory signaling in various cell types; however, its function in ASM is unknown. The aim of this study was to investigate the role of TAK1 in growth factor-induced phenotypic modulation of ASM. Using bovine tracheal smooth muscle (BTSM) strips and cells, as well as human tracheal smooth muscle cells, we investigated the role of TAK1 in growth factor-induced proliferation and hypocontractility. Platelet-derived growth factor- (PDGF; 10 ng/ml) and fetal bovine serum (5%)-induced increases in DNA synthesis and cell number in bovine and human cells were significantly inhibited by pretreatment with the specific TAK1 inhibitor LL-Z-1640-2 (5Z-7-oxozeaenol; 100 nM). PDGF-induced DNA synthesis and extracellular signal-regulated kinase-1/2 phosphorylation in BTSM cells were strongly inhibited by both LL-Z-1640-2 pretreatment and transfection of dominant-negative TAK1. In addition, LL-Z-1640-2 inhibited PDGF-induced reduction of BTSM contractility and smooth muscle α-actin expression. The data indicate that TAK1 plays a major role in growth factor-induced phenotypic modulation of ASM.  相似文献   

17.
The cellular and molecular mechanisms that are involved in airway hyper-responsiveness are unclear. Current studies suggest that tumor necrosis factor (TNF)-α, a cytokine that is produced in considerable quantities in asthmatic airways, may potentially be involved in the development of bronchial hyper-responsiveness by directly altering the contractile properties of the airway smooth muscle (ASM). The underlying mechanisms are not known, but growing evidence now suggests that most of the biologic effects of TNF-α on ASM are mediated by the p55 receptor or tumor necrosis factor receptor (TNFR)1. In addition, activation of TNFR1 coupled to the tumor necrosis factor receptor-associated factor (TRAF)2-nuclear factor-κB (NF-κB) pathway alters calcium homeostasis in ASM, which appears to be a new potential mechanism underlying ASM hyper-responsiveness.  相似文献   

18.
Reactive oxygen species (ROS) increase the contractile response of airway smooth muscle (ASM). Heme oxygenase (HO) catabolizes heme to the powerful antioxidant bilirubin. Because HO is expressed in the airways, we investigated its effects on ASM contractility and ROS production in guinea pig trachea. HO expression was higher in the epithelium than in tracheal smooth muscle. Incubation of tracheal rings (TR) with the HO inhibitor tin protoporphyrin (SnPP IX) or the HO substrate hemin increased and decreased, respectively, ASM contractile response to carbamylcholine. The effect of hemin was reversed by SnPP and mimicked by the antioxidants superoxide dismutase (SOD) and catalase. Hemin significantly reduced the effect of carbamylcholine in rings treated with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), compared with ODQ-treated rings without hemin incubation, suggesting that the CO-guanosine 3',5'-cyclic monophosphate pathway was not involved in the control of tracheal reactivity. SnPP and hemin increased and decreased ROS production by TR by 18 and 38%, respectively. Bilirubin (100 pM) significantly decreased TR contractility and ROS production. Hemin, bilirubin, and SOD/catalase decreased phosphorylation of the contractile protein myosin light chain, whereas SnPP significantly augmented it. These data suggest that modulation of the redox status by HO and, moreover, by bilirubin modulates ASM contractility by modulating levels of phosphorylated myosin light chain.  相似文献   

19.
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.  相似文献   

20.
Afferent neural pathways in cough and reflex bronchoconstriction   总被引:9,自引:0,他引:9  
Cough and bronchoconstriction are airway reflexes that protect the lung from inspired noxious agents. These two reflexes can be evoked both from the larynx and tracheobronchial tree and also from some extrarespiratory sites. Within the airways, certain sites are particularly sensitive to stimulation of cough (larynx and points of proximal airway branching), whereas bronchoconstriction can be triggered from the whole of the tracheobronchial tree. In the larynx, "irritant" receptors with myelinated afferents mediate cough and bronchoconstriction. Little seems to be known about laryngeal nonmyelinated afferents and their reflexes. In the tracheobronchial tree and lung, slowly adapting stretch receptors (SARs) and rapidly adapting stretch receptors (RARs) have opposing effects on airway tone, the former mediating bronchodilation and the latter bronchoconstriction. In cough, on the other hand, they operate concurrently, a mediatory role for RARs and a facilitatory role for SARs. C-fiber endings (bronchial and pulmonary) mediate bronchoconstriction. Inhalation of so-called "selective" C-fiber stimulants induces cough, but excitation of RARs has not been eliminated, and the possibility also exists that the cough is secondary to other lung actions mediated by these nerve endings. Although cough and bronchoconstriction may be mediated by the same type of receptor, they seem to have separate afferent neural pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号