首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the opioid receptor-like receptor or nociceptin receptor (NOP). We have compared a novel non-peptide NOP agonist Ro64-6198 with N/OFQ in a series of GTPgamma35S binding and inhibition of forskolin stimulated cAMP formation assays. GTPgamma35S binding assays were performed in membranes prepared from Chinese hamster ovary cells expressing the recombinant human NOP (CHOhNOP). cAMP inhibition studies were performed in whole CHOhNOP cells. Both Ro64-6198 and N/OFQ stimulated GTPgamma35S binding with pEC50 values(95%CL) of 7.61(0.18) and 8.58(0.21) respectively. Both Ro64-6198 and N/OFQ inhibited cAMP formation with pEC50 values of 8.45(0.9) and 9.28(028) respectively. In each assay Ro64-6198 and N/OFQ were full agonists. Ro64-6198 stimulation of GTPgamma35S binding and inhibition of cAMP formation was competitively antagonised by the NOP antagonists [Nphe1]NC(1 - 13)NH2 (10microM), J-113397 (100nM) and III-BTD (1microM) with pKB values of 7.04(0.34) and 6.29(0.10), 8.65(0.34) and 7.90(0.30) and 7.59(0.22) and 7.60(0.22) respectively. Despite the slightly reduced potency of Ro64-6198 compared with N/OFQ, by virtue of high selectivity and relative metabolic stability this molecule will be of considerable use in studies of the actions of the NOP.  相似文献   

2.
Activation of the NOP receptor by the endogenous ligand nociceptin/orphanin FQ (N/OFQ) reduces alcohol consumption in genetically selected alcohol-preferring Marchigian Sardinian (msP) rats. The present study evaluated the effect of three newly synthesized peptidergic and one brain-penetrating heterocyclic NOP receptor agonists on alcohol drinking in the two bottle choice paradigm. MsP rats were intracerebroventricularly (ICV) injected with the NOP receptor agonists OS-462 (0.5 and 1.0 μg), UFP-102 (0.25 and 1.0 μg) or UFP-112 (0.01 and 0.05 μg), or with Ro 64-6198 (0.3 and 1.0 mg/kg) given intraperitoneally (i.p.) and tested for 10% alcohol consumption. Results showed decreased alcohol consumption after treatment with all three peptidergic NOP receptor agonists (OS-462, UFP-102 and UFP-112). OS-462 (at the 1.0 μg dose) and UFP-102 (at the 0.25 μg dose) induced a significant increase in food intake as well. Surprisingly, Ro 64-6198 was ineffective at the 0.3 mg/kg dose, whereas it increased ethanol and food consumption at the 1.0 mg/kg dose. Pre-treatment with the selective μ-receptor antagonist naloxone (0.5 mg/kg, i.p.) reduced these effects of 1.0 mg/kg of Ro 64-6198. These findings confirm that activation of brain NOP receptors reduces alcohol drinking in msP rats and demonstrate that OS-462, UFP-102 and UFP-112 act as potent NOP receptor agonists. On the other hand, Ro 64-6198 increased alcohol drinking, an effect probably induced by a residual agonist activity of this compound at μ-opioid receptors. Overall, the results indicate that OS-462, UFP-102 and UFP-112 may represent valuable pharmacological tools to investigate the functional role of the brain N/OFQ system.  相似文献   

3.
[(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) has been designed as a novel ligand for the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) by combining into the same peptide different chemical modifications reported to increase N/OFQ potency. In vitro data obtained in the electrically stimulated mouse vas deferens demonstrated that UFP-112 behaved as a high potency (pEC(50) 9.43) full agonist at the NOP receptor. UFP-112 effects were sensitive to the NOP antagonist UFP-101 but not to naloxone and no longer evident in tissues taken from NOP(-/-) mice. In vitro half life of UFP-112 in mouse plasma and brain homogenate was 2.6- and 3.5-fold higher than that of N/OFQ. In vivo, in the mouse tail withdrawal assay, UFP-112 (1-100pmol, i.c.v.) mimicked the actions of N/OFQ producing pronociceptive effects after i.c.v. administration and antinociceptive effects when given i.t.; in both cases, UFP-112 was approximately 100-fold more potent than the natural peptide and produced longer lasting effects. UFP-112 also mimicked the hyperphagic effect of N/OFQ producing a bell shaped dose response curve with the maximum reached at 10pmol. The hyperphagic effects of N/OFQ and UFP-112 were absent in NOP(-/-) mice. Equi-effective high doses of UFP-112 (0.1nmol) and N/OFQ (10nmol) were injected i.c.v. in mice and spontaneous locomotor activity recorded for 16h. N/OFQ produced a clear inhibitory effect which lasted for 60min while UFP-112 elicited longer lasting effects (>6h). In conscious rats, UFP-112 (0.1 and 10nmol/kg, i.v.) produced a marked and sustained decrease in heart rate, blood pressure, and urinary sodium excretion and a profound increase in urine flow. Collectively, these findings demonstrate that UFP-112 behaves in vitro and in vivo as a highly potent and selective ligand able to produce full and long lasting activation of NOP receptors.  相似文献   

4.
The influence of peripheral nociceptin/orphanin FQ (N/OFQ) on cold restraint-induced gastric mucosal damage in the rat was investigated. Exposure to cold-restraint for 3 and 4h caused the formation of hemorrhagic lesions in the glandular portion of the stomach. N/OFQ dose-dependently decreased lesion formation, in the range 0.03-1 microg/kg/h i.p. Its effect was reversed by the selective NOP receptor antagonist [Nphe(1)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-101), 30 microg/kg/h ip. The selective NOP receptor agonist [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112), 0.01-0.3 microg/kg/h i.p., similarly reduced lesion formation. Light and scanning electron microscopy confirmed the protective activity of N/OFQ. Cold-restraint stress causes a reduction in mucus content and in adhering mucus layer, partly counteracted by N/OFQ. These results suggest that N/OFQ counteracts acute stress-induced gastric mucosal damage by interacting with NOP receptor and by influencing mucous cell activity.  相似文献   

5.
Nociceptin/orphanin FQ (N/OFQ), the endogenous NOP receptor ligand, centrally modulates gastric motor and secretory functions and prevents ethanol-induced gastric lesions in rats. A recently synthesized N/OFQ analog, [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112), acts as a highly potent and selective peptide agonist for NOP receptors and produces longer-lasting in vitro and in vivo effects in mice than the natural ligand N/OFQ. In this study, we evaluated the effects of centrally (intracerebroventricularly/icv) and peripherally (intraperitoneally/ip) injected UFP-112 on gastric emptying and gastric acid secretion, and on the development of gastric mucosal lesions induced by 50% ethanol in the rat. When injected icv, it dose-dependently delayed gastric emptying of a phenol red meal (by up to 70%), decreased gastric secretion in water-loaded rats after 90 pylorus ligature, and reduced ethanol-induced gastric lesions (by up to 87%). In all three assays, UFP-112 was more effective than N/OFQ. The highly selective NOP receptor antagonist, UFP-101, decreased the efficacy of UFP-112, thus confirming that central NOP receptors mediate inhibitory control on these functional and pathological conditions in rats. Ip injected N/OFQ and UFP-112 induced non-dose-related gastric hypersecretory and antiulcer effects, which UFP-101 partially abolished. Ip N/OFQ appeared equiactive but about 30-100 times less potent than ip UFP-112 in stimulating gastric acid secretion and preventing lesion formation. When ip injected, both UFP-112 and N/OFQ left gastric emptying in rats unchanged, suggesting that peripheral NOP receptors have a role in mediating gastric hypersecretory and antiulcer effects but are not involved in regulating gastric motility. In addition, the inhibitory effects induced by this novel NOP receptor agonist lasted longer than those induced by N/OFQ. In conclusion, UFP-112 is a promising new pharmacological tool for studying the functional roles of the central and peripheral N/OFQ receptor system.  相似文献   

6.
Previous structure-activity and NMR studies on nociceptin/orphanin FQ (N/OFQ) demonstrated that Aib substitution of Ala(7) and/or Ala(11) increases the peptide potency through an alpha helix structure induction mechanism. On these bases we synthesised and evaluated pharmacologically in the mouse vas deferens assay a series of N/OFQ-NH(2) analogues substituted in position 7 and 11 with Calpha,alpha-disubstituted cyclic, linear and branched amino acids. None of the 20 novel N/OFQ analogues produced better results than [Aib(7)]N/OFQ-NH(2). Thus, this substitution was combined with other chemical modifications known to modulate peptide potency and/or efficacy generating compound 21 [Nphe(1)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (coded as UFP-111), compound 22 [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) and compound 23 [Phe(1)Psi(CH(2)-NH)Gly(2)(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-113). These novel peptides behaved as highly potent NOP receptor ligands showing full (UFP-112) and partial (UFP-113) agonist and pure antagonist (UFP-111) activities in a series of in vitro functional assays performed on pharmacological preparations expressing native as well as recombinant NOP receptors.  相似文献   

7.
We recently showed that pharmacological blockade of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptors located in the substantia nigra stimulates the nigrostriatal dopaminergic pathway and motor behavior (Marti et al. J. Neurosci. 2004, 24, 6659-6666). To investigate whether such motor-stimulating action was dependent on functional dopaminergic transmission, the selective NOP receptor peptide antagonist [Nphe1,Arg14,Lys15]N/OFQ-NH2 (UFP-101) was microinjected into the substantia nigra reticulata of rats made cataleptic by systemic haloperidol administration. UFP-101 reduced haloperidol-induced akinesia as measured by immobility time in the bar test. UFP-101 also induced contralateral turning in cataleptic rats. To investigate the mechanisms involved in the anti-akinetic action of UFP-101, nigral glutamate release was monitored by microdialysis technique. The anti-akinetic action of UFP-101 correlated with normalization of nigral glutamate release, previously elevated by haloperidol injection. We conclude that endogenous N/OFQ in the substantia nigra sustains akinesia generated by impaired DA transmission and subthalamic nucleus overactivation. NOP receptor antagonists may be beneficial in the symptomatic therapy of parkinsonism, via normalization of subthalamonigral glutamatergic transmission.  相似文献   

8.
Nociceptin/orphanin FQ (N/OFQ) administered into the lateral left cerebral ventricle of rats has been reported to inhibit in vivo gut motor and secretory functions. Recently, a novel N/OFQ analog, [Arg14, Lys15] N/OFQ, was synthesized and demonstrated to behave as a highly potent agonist at the human recombinant N/OFQ peptide (NOP) receptors and to produce long-lasting effects in vivo in mice compared with the natural ligand N/OFQ. In the present study, the pharmacological profile of [Arg14, Lys15] N/OFQ was further evaluated and compared with that of N/OFQ in vitro on guinea pig exocrine pancreas and in vivo on gastric emptying, colonic propulsion and gastric acid secretion in rats. [Arg14, Lys15] N/OFQ and N/OFQ significantly decreased the KCl-evoked amylase secretion from isolated pancreatic lobules of the guinea pig. In in vivo experiments, [Arg14, Lys15] N/OFQ mimicked the effects of N/OFQ, inducing, after intracerebroventricular injection, a delay (up to 70%) in the gastric emptying of a phenol red meal, an increase (about 40 times) of the mean bead colonic expulsion time and a decrease (up to 90%) of gastric acid secretion in water loaded rats after 90 min pylorus ligature. In all these assays, [Arg14, Lys15] N/OFQ was more effective than N/OFQ, and its effective doses were at least 10-fold lower than N/OFQ effective doses. The highly selective NOP receptor antagonist, UFP-101, decreased the efficacy of [Arg14, Lys15] N/OFQ in in vitro and in vivo assays above reported. These findings: (a) show that pancreatic NOP receptors mediate an in vitro inhibitory effect on stimulated guinea pig amylase secretion; (b) confirm that the stimulation of central NOP receptors exerts an inhibitory control on gastric emptying, colonic motility and gastric secretion in rats and (c) put in evidence that [Arg14, Lys15] N/OFQ, being more potent and effective than the natural ligand N/OFQ, represents a new pharmacological tool for the study of the physiological and pharmacological roles mediated by the N/OFQ-NOP receptor system.  相似文献   

9.
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit neurogenic contractions in various tissues, including guinea pig airways. In the present study, we investigated the ability of N/OFQ to affect cholinergic contractions of human bronchi elicited by electrical field stimulation (EFS). Tissues were obtained from 23 patients undergoing surgery for lung cancer. EFS (20 Hz, 320 mA, 1.5 ms, 10 s) was applied five times every 20 min. Contractions induced by EFS were abolished by either TTX (1 microM) or atropine (1 microM) and concentration-dependently (10 nM-1 microM) inhibited by N/OFQ (Emax, 11.5+/-1.8% inhibition). The inhibitory effects of N/OFQ were mimicked by the N/OFQ receptor (NOP) ligand [Arg14, Lys15]N/OFQ which displayed however, higher significant maximal effects (17.7+/-2.9% inhibition, P<0.05). The actions of N/OFQ and [Arg14, Lys15]N/OFQ were not affected by naloxone (1 microM) while prevented by the selective NOP receptor antagonist UFP-101 (10 microM). Moreover, the inhibitory effects of NOP agonists were no longer evident in tissues treated with tertiapin (10 microM), an inhibitor of inward-rectifier potassium channels. In conclusion, the present data demonstrate that N/OFQ inhibited acetylcholine (ACh) release in the human bronchi via NOP receptor activation. This effect may involve stimulation of potassium currents.  相似文献   

10.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the G-protein coupled receptor referred to as N/OFQ peptide (NOP) receptor. NOP receptor activation by N/OFQ modulates several biological functions both at central and peripheral level. Structure activity relationship (SAR) studies demonstrated that the N/OFQ sequence can be divided into a N-terminal tetrapeptide 'message' crucial for receptor activation and a C-terminal 'address' important for receptor binding. On the basis of this message/address concept we synthesized some chimeric compounds in which we substituted the natural message domain with the nonselective nonpeptide NOP ligand (8-Naphthalen-1-yl-methyl-4-oxo-1-phenyl-1,3,8-triaza-spiro[4,5]dec-3-yl)-aceticacid methyl ester (NNC 63-0532) and used as address domain the peptide sequences Thr-NH2, N/OFQ(5-9)-NH2, N/OFQ(5-13)-NH2 and N/OFQ(5-17)-NH2. All the compounds were pharmacologically evaluated in the electrically stimulated guinea-pig ileum. NNC 63-0532 produced a concentration-dependent inhibition of the electrically induced twitches showing, in comparison with N/OFQ, lower potency and higher maximal effects. In addition, contrary to N/OFQ, the effects of NNC 63-0532 were insensitive to the NOP selective antagonist [Nphe1, Arg14, Lys15]N/OFQ-NH2 (UFP-101) while prevented by naloxone. Similar results were obtained with NNC 63-0532/Thr-NH2 and NNC 63-0532/N/OFQ(1-9)-NH2. On the contrary, the inhibitory effects of NNC 63-0532/N/OFQ(5-13)-NH2 and NNC 63-0532/N/OFQ(5-17)-NH2 were slightly antagonized by UFP-101 while naloxone prevented the effects of the high but not of the low concentrations of the two ligands. These data indicate that it is possible to functionalize with the N/OFQ address sequence a nonpeptide NOP ligand for increasing its binding to the NOP receptor. Moreover, these results corroborate the idea that the 5-13 sequence represents the crucial core of the N/OFQ address domain.  相似文献   

11.
Liao YY  Lee CW  Ho IK  Chiou LC 《Life sciences》2012,90(7-8):306-312
AimThe nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor was reported to be functionally heterogeneous. We investigated if [Tyr10]N/OFQ(1-11), a peptide ligand reported to selectively bind to the high affinity site of 125I-[Tyr14]N/OFQ in rodent brains, can be a tool for revealing the NOP receptor heterogeneity. We have previously founded an NOP receptor subset insensitive to Ro 64-6198 and (+)-5a Compound, two non-peptide NOP agonists, in rat ventrolateral periaqueductal gray (vlPAG) neurons. Here, we examined if [Tyr10]N/OFQ(1-11) differentiated (+)-5a Compound-sensitive and -insensitive vlPAG neurons. Certain mu-opioid (MOP) receptor ligands highly competing with [Tyr10]N/OFQ(1-11) in binding studies also showed high affinity at expressed heteromeric NOP–MOP receptors. We also examined if [Tyr10]N/OFQ(1-11) distinguished heteromeric NOP–MOP receptors from homomeric NOP receptors.Main methodsThe NOP receptor activity was evaluated by G-protein coupled inwardly rectifying potassium (GIRK) currents in rat vlPAG slices, and by inhibition of cAMP accumulation in HEK293 cells expressing NOP receptors or co-expressing NOP and MOP receptors.Key findingsIn vlPAG neurons, [Tyr10]N/OFQ(1-11), like N/OFQ, induced GIRK currents through NOP receptors. It was less potent (EC50: 8.98 μM) but equi-efficacious as N/OFQ. [Tyr10]N/OFQ(1-11) displayed different pharmacological profiles as (+)-5a Compound, and was effective in both (+)-5a Compound-sensitive and -insensitive neurons. In NOP-expressing HEK293 cells and NOP- and MOP-co-expressing cells, [Tyr10]N/OFQ(1-11) displayed similar concentration–response curves in decreasing cAMP accumulation.Significance[Tyr10]N/OFQ(1-11) is an NOP full agonist and less potent than N/OFQ. However, it can neither reveal the functional heterogeneity of NOP receptors in vlPAG neurons nor differentiate heteromeric NOP–MOP and homomeric NOP receptors.  相似文献   

12.
ZP120 is a nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) ligand. In previous studies, the effects of ZP120 were found to be sensitive to J-113397 in mouse tissues while resistant to UFP-101 in rat tissues. The aim of this study was to further investigate the ZP120 pharmacological profile using mouse and rat preparations, J-113397 and UFP-101, as well as NOP receptor knockout (NOP(-/-)) mice. Electrically stimulated mouse and rat vas deferens were used to characterize the pharmacology of ZP120 in vitro. For in vivo studies the tail-withdrawal assay was performed in wild type (NOP(+/+)) and NOP knockout (NOP(-/-)) mice. In the mouse and rat vas deferens ZP120 mimicked the effects of N/OFQ showing higher potency but lower maximal effects. In both preparations, J-113397 antagonized N/OFQ and ZP120 effects showing similar pK(B) values ( approximately 7.8). UFP-101 antagonized the actions of N/OFQ (pK(B) values approximately 7.3) but did not modify the effects of ZP120. The inhibitory effects of N/OFQ and ZP120 were no longer evident in vas deferens tissues taken from NOP(-/-) mice. In NOP(+/+) mice subjected to the tail-withdrawal assay, ZP120 (1 nmol) mimicked the pronociceptive action of N/OFQ (10 nmol), producing longer lasting effects. The effects of both peptides were absent in NOP(-/-) animals. The NOP receptor ligand ZP120 is a high potency NOP selective partial agonist able to evoke long-lasting effects; its diverse antagonist sensitivity in comparison with N/OFQ may derive from different modality of binding to the NOP receptor.  相似文献   

13.
Nociceptin/orphanin FQ (N/OFQ) modulates various biological functions, including nociception, via selective stimulation of the N/OFQ peptide receptor (NOP). Here we used the NOP selective antagonist UFP-101 to characterize the receptor involved in the spinal antinociceptive effects of N/OFQ evaluated in the mouse tail withdrawal assay and to investigate the mechanism underlying this action by assessing excitatory postsynaptic currents (EPSC) in laminas I and II of the mouse spinal cord dorsal horn with patch-clamp techniques. Intrathecal (i.t.) injection of N/OFQ in the range of 0.1-10 nmol produced a dose dependent antinociceptive effect, which was prevented by UFP-101, but not by naloxone. In contrast the antinociceptive effect of the mu-opioid peptide receptor agonist endomorphin-1 was blocked by naloxone but not by UFP-101. Moreover, N/OFQ and endomorphin-1 induced a significant antinociceptive effect in wild type mice while in mice knockout for the NOP receptor gene only endomorphin-1 was found to be active. In mouse spinal cord slices 1 microM N/OFQ reduced EPSC to 60+/-4% of control values. This inhibitory effect was reversed in a concentration dependent manner by UFP-101 (pA2 value 6.44). The present results demonstrate that N/OFQ-induced spinal antinociception in vivo and inhibition of spinal excitatory transmission in vitro are mediated by receptors of the NOP type.  相似文献   

14.
Peng YL  Chang M  Dong SL  Li W  Han RW  Fu GX  Chen Q  Wang R 《Regulatory peptides》2006,134(2-3):75-81
Two novel ligands for the nociceptin/orphanin FQ (N/OFQ) receptor (NOP), [(pF)Phe4,Aib7, Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-1) and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 (peptide-2), have been generated by combining different modifications of N/OFQ sequence. In the present study, we investigated the actions of two analogues and compared them with those of N/OFQ in four assays. Peptide-1 mimicked N/OFQ effects in mouse vas deferens and mouse colon and showed similar maximal effects but higher potency relative to N/OFQ. The effects of peptide-1 were sensitive to NOP receptor selective antagonist ([Nphe1]N/OFQ(1-13)-NH2) but not to naloxone in vitro. Peptide-1 (25 pmol, i.c.v.) mimicked the pronociceptive action of N/OFQ (2.5 nmol, i.c.v.) in mouse tail withdrawal assay, displaying higher potency and longer lasting effects. In anesthetized rats, peptide-1 (1 nmol/kg, i.v.) produced a marked decrease in mean arterial pressure, which was comparable to that evoked by i.v. N/OFQ (100 nmol/kg). Peptide-2 did not produce any effect per se but antagonized N/OFQ actions in mouse vas deferens and mouse colon assays. Peptide-2 is active in vivo where it prevented the pronociceptive effect induced by 2.5 nmol N/OFQ i.c.v. in the mouse tail withdrawal assay. Furthermore, peptide-2 at 5 nmol produced alone a robust and long lasting antinociceptive effect. Moreover, peptide-2 (10 and 40 nmol/kg i.v.) didn't produce any effect per se but antagonized hypotensive actions produced by i.v. administration of N/OFQ. Collectively, these findings demonstrate that [(pF)Phe4,Aib7,Aib11, Arg14,Lys15]N/OFQ-NH2 behaves as a highly potent NOP receptor agonist which produces long lasting effects in vivo and [Nphe1,(pF)Phe4,Aib7,Aib11,Arg14,Lys15]N/OFQ-NH2 acts as a pure and competitive antagonist of the NOP receptor.  相似文献   

15.
Nociceptin/orphanin FQ (N/OFQ) is an endogenous ligand of a G protein-coupled receptornamed NOP. This neuropeptide has been identified as an orexigenic stimulus in the brain of birds and mammals. The purpose of the present study was to clarify whether blockade or stimulation of nociceptin receptors affects adrenaline-induced feeding behaviour in broilers. In Experiment 1, birds received intracerebroventricular (ICV) injection of Nociceptin (1–13) NH2 (potent NOP receptor agonist, 16 nmol) followed by adrenaline (80 nmol). In Experiment 2, the birds received UFP-101, (NOP receptor antagonist, 10 nmol) prior to injection of adrenaline (80 nmol). Cumulative food and water intake was measured at 2 h post-injection. When administrated alone, adrenaline significantly increased food and water intake. The ICV injection of Nociceptin (1–13) NH2 significantly increased food intake but not water intake. Pre-injection of Nociceptin (1–13) NH2 significantly increased the adrenaline-induced feeding response. The effect of adrenaline on food intake was transiently blocked by microinjection of UFP-101. UFP-101-induced anorexia was accompanied by a transient increase in water intake. The transient dipsogenic effect of UFP-101 suggests a role of endogenous N/OFQ-NOP receptor pathways in the regulation of water intake in chickens, which is food intake-independent. These results also provide further evidence for a reciprocal interaction between adrenergic receptors and N/OFQ on feeding behavior.  相似文献   

16.
Scoto GM  Aricò G  Ronsisvalle S  Parenti C 《Peptides》2007,28(7):1441-1446
Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) are involved in various biological functions including pain. High density of NOP receptor has been found in the ventrolateral periaqueductal gray (vlPAG), the main output pathway involved in descending pain-control system. The aim of our work was to evaluate the involvement of the N/OFQ/NOP system in the modulation of MOP analgesia in the rat vlPAG using UFP-101, a selective NOP antagonist. N/OFQ significantly blocked DAMGO (a selective MOP agonist) analgesia, while UFP-101 enhanced the effect of the opioid given at a subanalgesic dose. These results confirm our hypothesis of an antiopioid role for N/OFQ in the vlPAG.  相似文献   

17.
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the NOP receptor, exerts a variety of effects on the gastrointestinal tract. The present study was aimed at evaluating the possible implication of N/OFQ in the maintenance of gastric mucosal integrity. N/OFQ was given either centrally or peripherally 30 min prior to intragastric administration (i.g.) of 1 ml/rat of ethanol (either 25% or 50%, v/v), which produces macroscopically visible gastric lesions. Intracerebroventricular (i.c.v.) injection of 2 microg/rat of N/OFQ significantly reduced lesions caused by 50% ethanol, while 1 microg/rat was enough to significantly reduce lesions caused by 25% ethanol. Intracerebroventricular injection of 5 microg/rat of the selective NOP receptor antagonist, UFP-101, completely reversed the protective effect of N/OFQ, 1 or 4 microg/rat against 25% or 50% ethanol, respectively. The intraperitoneal (i.p.) injection of N/OFQ produced a significant reduction of lesions induced by 50% ethanol, the peak effect being observed at 10 microg/kg. Intraperitoneal pretreatment with UFP-101, 120 microg/kg, completely abolished the protective effect of peripherally injected N/OFQ. Therefore, N/OFQ acts both centrally and peripherally as a protective agent against ethanol-induced gastric lesions, and its effect is mediated by NOP receptors.  相似文献   

18.
Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor (NOP). N/OFQ causes hypotension and vasodilation, and we aimed to determine the role of histamine in inflammatory microvascular responses to N/OFQ. Male Wistar rats (220-300 g, n = 72) were anesthetized with thiopental (30 mg/kg bolus, 40-90 mg x kg(-1) x h(-1) iv), and the mesentery was prepared for fluorescent intravital microscopy using fluorescein isothiocyanate-conjugated BSA (FITC-BSA, 0.25 ml/100 g iv) or 1 microm fluorescently labeled microspheres. N/OFQ (0.6-60 nmol/kg iv) caused hypotension (SAP, baseline: 154 +/- 11 mmHg, 15 nmol/kg N/OFQ: 112 +/- 10 mmHg, P = 0.009), vasodilation (venules: 23.9 +/- 1.2 microm, 26.7 +/- 1.2 microm, P = 0.006), macromolecular leak (interstitial gray level FITC-BSA: 103.7 +/- 3.4, 123.5 +/- 11.8, P = 0.009), and leukocyte adhesion (2.0 +/- 0.9, 15.2 +/- 0.9/100 microm, P = 0.036). Microsphere velocity also decreased (venules: 1,230 +/- 370 microm/s, P = 0.037), but there were no significant changes in blood flow. Flow cytometry measured a concurrent increase in neutrophil expression of cd11b with N/OFQ vs. controls (Geo mean fluorescence: 4.19 +/- 0.13 vs. 2.06 +/- 0.38, P < 0.05). The NOP antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) (UFP-101; 60 and 150 nmol/kg iv), H(1) and H(2)antagonists pyrilamine (mepyramine, 1 mg/kg iv) and ranitidine (1 mg/kg iv), and mast cell stabilizer cromolyn (1 mg x kg(-1) x min(-1)) also abolished vasodilation and macromolecular leak to N/OFQ in vivo (P < 0.05), but did not affect hypotension. Isolated mesenteric arteries (approximately 200 microm, n = 25) preconstricted with U-46619 were also mounted on a pressure myograph (60 mmHg), and both intraluminally and extraluminally administered N/OFQ (10(-5) M) caused dilation, inhibited by pyrilamine in the extraluminal but not the intraluminal (control: -6.9 +/- 3.8%; N/OFQ: 32.6 +/- 8.4%; pyrilamine: 31.5 +/- 6.8%, n = 18, P < 0.05) experiments. We conclude that, in vivo, mesenteric microvascular dilation and macromolecular leak occur via N/OFQ-NOP-mediated release of histamine from mast cells. Therefore, N/OFQ-NOP has an important role in microvascular inflammation, and this may be targeted during disease, particularly as we have proven that UFP-101 is an effective antagonist of microvascular responses in vivo.  相似文献   

19.
Nociceptin/orphanin FQ (N/OFQ), the endogenous ligand for the NOP opioid receptor, stimulates feeding in rats. The present study evaluated the effect of three newly synthesized NOP receptor agonists and two NOP receptor antagonist on food intake. Freely feeding rats were tested with intracerebroventricular (ICV) injections of the NOP receptor agonists OS-500, OS-462 and OS-461. OS-500 and OS-462 evoked a hyperphagic effect more potent and far more pronounced than that of N/OFQ, while OS-461 was ineffective. OS-500 and OS-462 were also tested by intraperitoneal injection, but were unable to evoke hyperphagia following this route of administration. The NOP receptor antagonist NC-797 and UFP-101 did not modify feeding in freely feeding rats while fully antagonized the hyperphagic effect of N/OFQ. Pre-treatment with UFP-101 but not with NC-797 antagonized the hyperphagic effect of OS-462 and OS-500. The present findings indicate that OS-500, OS-462 may act as potent and long-lasting NOP receptor agonists, whereas UFP-101 and NC-797 show antagonistic properties. The higher efficacy of UFP-101 in blocking the hyperphagic effect of OS-462 and OS-500 may be linked to the better pharmacokinetic profile of this antagonist compared to NC-797. Overall, the results indicate that these compounds may represent valuable pharmacological tools to investigate the role of the brain N/OFQ system.  相似文献   

20.
Nociceptin/orphanin FQ (=N/OFQ), the endogenous ligand of ORL1 receptor (=NOP), has been reported to induce, in rodents, after intracerebroventricular (i.c.v.) administration, anti-stress and anxiolytic effects. We have observed that the handling of mice followed by an i.c.v. injection of saline, induced a marked increase in the plasma corticosterone level (+250%) measured 30 minutes later. When N/OFQ was injected intracerebroventricularly, using a 1 microg dose, the increase in plasma corticosterone was significantly lower than in saline injected mice. N/OFQ(1-13)NH(2), known as a NOP receptor agonist, at the same 1 microg dose, also induced a lesser increase in plasma corticosterone level than a saline i.c.v. injection. The pseudopeptide [Phe(1)-psi(CH(2)-NH)Gly(2)]N/OFQ(1-13)NH(2), defined either as an agonist or an antagonist of NOP receptor, at the 0.1 microg dose, behaved in a similar manner as N/OFQ, by decreasing the plasma corticosterone level. Finally, [Nphe(1)]N/OFQ(1-13)NH(2), although presumed to be a selective NOP receptor antagonist, also decreased the corticosterone level at the 0.1 microg dose. These observations suggest the implication of N/OFQ in the regulation of response to stress, through an action on the hypothalamo-pituitary-adrenocortical axis. Moreover, they evidence a similar effect of N/OFQ and N/OFQ(1-13)NH(2), but also of two other related peptides displaying antagonist properties on NOP receptors. These data suggest that several subtypes of N/OFQ receptors could exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号