首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the domestic swine industry there is growing trepidation about the role feral swine (Sus scrofa) play in the maintenance and transmission of important swine diseases. Innovative disease management tools for feral swine are needed. We used field trials conducted in southern Texas from February to March 2006 to compare species-specific visitation and removal rates of fish-flavored and vegetable-flavored baits with and without commercially available raccoon (Procyon lotor) repellent (trial 1) and removal rates of baits deployed in a systematic and cluster arrangement (trial 2). During trial 1, 1) cumulative bait removal rates after four nights ranged from 93% to 98%; 2) bait removal rates by feral swine, raccoons, and collared peccaries (Pecari tajacu) did not differ by treatment; and 3) coyotes (Canis latrans) removed more fish-flavored baits without raccoon repellent and white-tailed deer removed more vegetable-flavored baits without raccoon repellent than expected. During trial 2, feral swine removed fish-flavored baits distributed in a cluster arrangement (eight baits within 5 m2) at a rate greater than expected. Our observed bait removal rates illustrate bait attractiveness to feral swine. However, the diverse assemblage of omnivores in the United States compared with Australia where the baits were manufactured adds complexity to the development of a feral swine-specific baiting system for pharmaceutical delivery.  相似文献   

2.
Mitigation of feral pig (Sus scrofa) impacts in Australia’s Wet Tropics World Heritage Area has been impeded by the lack of a target‐specific method for delivering toxic baits in the region. This study evaluated methods to reduce bait‐take by susceptible nontarget species without inhibiting bait‐take by pigs, to enable more effective pig management. We predicted that dingoes would not select an unprocessed corn bait and that other potential nontarget bait consumers would be unable to access the same bait presented under a lightweight cover. Neither of these methods was expected to reduce bait selection or access by pigs. We tested these predictions by monitoring animal interactions with covered and uncovered corn baits, and covered corn and manufactured baits. Use of corn as a bait substrate effectively prevented bait‐take by dingoes. Covering baits substantially reduced bait‐take by other nontarget species and completely prevented nontarget bait‐take when uncovered feed was provided simultaneously. The corn bait preparation was highly acceptable and accessible to feral pigs. We conclude that the methods evaluated here could enable the consideration of poison baiting as a viable method for controlling feral pigs in the World Heritage Area, where it has previously been unavailable.  相似文献   

3.
A field study was conducted on Ossabaw Island (Georgia, USA) in March 1994 to evaluate four different types of bait for delivering orally effective biological agents to raccoons (Procyon lotor) and feral swine (Sus scrofa). A deep-fried corndog batter bait, which was previously shown to be ingested by both captive and free-ranging raccoons, and a polymer fishmeal bait which had been shown effective for both raccoons and feral swine were compared with a grain-based dog food meal polymer bait topically coated with corn oil and cornmeal or with fish oil and fishmeal. Tracking stations were used to determine the number of each bait type visited and removed by animals visiting stations. We found no significant differences in the numbers of different baits removed by either species. These data support the results of earlier studies which also indicated that an inexpensive grain-based matrix bait surface-coated with attractive flavors can be used to deliver oral biologics to problem species.  相似文献   

4.
ABSTRACT More effective methods to control feral swine (Sus scrofa) damage are needed. We evaluated 8 oral delivery systems designed to deliver pharmaceuticals to feral swine on 2 properties in southern Texas, USA. We used modified PIGOUT® feral pig bait (Animal Control Technologies Australia P/L, Somerton, Victoria, Australia) throughout our trials to compare species-specific visitation and removal rates. Given our consistent finding of high nontarget removal of baits intended for feral swine, we question whether a swine-specific oral delivery system exists for this region.  相似文献   

5.
ABSTRACT

Acute toxicity of sodium nitrite (NaNO2) was assessed in chickens (Gallus gallus domesticus) and domestic mallard ducks (Anas platyrhynchos domestica) by oral gavage and in free-feeding trials with chickens, domestic mallard ducks, pigeons (Columba livia f. domestica), budgerigars (Melopsittacus undulates) and wētā (Family: Rhaphidophoridae). Free-feeding trials involved the presentation of toxic paste and pellet baits containing encapsulated NaNO2 developed for the control of common brushtail possums (Trichosurus vulpecula) and feral pigs (Sus scrofa). The oral gavage LD50 value for NaNO2 in solution was approximately 68.50?mg/kg (95% CI 55.00–80.00?mg/kg) for both chickens and ducks. In feeding trials, six out of 12 chickens consumed toxic paste bait and four of these birds consumed a lethal dose. When chickens consumed toxic paste bait, the LD50 value was approximately 254.6?mg/kg (95% CI 249.1–260.2?mg/kg). Of the other three species of birds presented with toxic baits only one duck consumed a lethal dose of paste bait. There was no evidence of wētā feeding on toxic baits.  相似文献   

6.
《新西兰生态学杂志》2011,23(2):281-287
The risks to non-target species of a newly developed bait containing either 0.15% 1080 or 0.6% cholecalciferol in a gel matrix were assessed. Very few of them ate gel bait. The safety of the gel bait is further enhanced by its placement in the purpose-designed bait station from which little spillage occurs, and which can be placed so that it is out of reach of most non-target animals. Comparative data show that nontarget species are considerably less susceptible to cholecalciferol than to sodium monofluoroacetate (1080). Risks to non-target species could be further reduced by use of the cholecalciferol form of the bait.  相似文献   

7.
Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus). These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV) that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia''s 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii) was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.  相似文献   

8.
A field study was conducted on Ossabaw Island, Georgia (USA) to determine the feasibility of delivering oral vaccines to wild swine (Sus scrofa). Baits were made of polymerbound fish meal and contained a gelatin capsule as a potential vaccine chamber. Two biomarkers, iophenoxic acid and tetracycline, were incorporated into each bait, and soured chicken mash was used as an attractant. Baits (n = 1,980) were distributed in a grid pattern on a 405-ha test site and monitored for animal disturbance. Within 72 hr, 88% of 393 monitored baits were gone, and observations of track-beds surrounding 100 baits indicated that at least 52% were taken by wild swine. Subsequent testing of 80 wild swine for the biomarkers revealed that 95% of the animals had consumed bait. Track-bed observations indicated that raccoons (Procyon lotor) were the only non-target animal that frequently took baits. Biomarker analyses indicated 44% of 16 raccoons tested had eaten bait. It was concluded that oral vaccine delivery to wild swine should be considered as a feasible method of control or eradication of pseudorabies and/or swine brucellosis in wild swine if effective vaccines become available.  相似文献   

9.
GF-120 is a baited formulation of the insecticide spinosad containing 1% ammonium acetate, developed for control of economically important fruit flies. The response of feral cherry fruit flies, Rhagoletis cingulata Loew, to GF-120 augmented with 0, 5, or 10% ammonium acetate was evaluated under orchard conditions. Significantly more flies were observed within 30 cm of bait droplets with 10% ammonium acetate added compared with standard bait or to a water control. These fly visits to GF-120 enhanced with 10 or 5% ammonium acetate lasted an average of 263.2 +/- 85.2 and 337.6 +/- 72.6 s, respectively, compared with 50.3 +/- 36.4 s for standard GF-120. Droplets containing additional ammonium acetate also were contacted by more flies, and more flies fed upon these droplets than on GF-120 or the water control. Furthermore, the duration of feeding on GF-120 bait enhanced with either level of additional ammonium acetate was significantly greater compared with standard GF-120 or water. Feeding events lasted between 61.5 +/- 30.7 and 73.4 +/- 21.0 s on enhanced GF-120 compared with 6.8 +/- 5.7 s on standard GF-120. Collectively, these results indicate that the interaction of feral R. cingulata with GF-120 droplets and the toxicant spinosad can be increased by addition of ammonium acetate.  相似文献   

10.
Control of introduced predators to mitigate biodiversity impacts is a pressing conservation challenge. Across Australia feral cats (Felis catus) are a major threat to terrestrial biodiversity. Currently feral cat control is hindered by the limited utility of existing predator baiting methods. Further proposed control methods include use of the novel poison para-aminopropiophenone (PAPP) which may present a hazard to some native animal populations. Here we used experimental and predictive approaches to evaluate feral cat bait take by a large native Australian predatory reptile the Lace monitor (Varanus varius). These lizards would be expected to readily detect, ingest and consume a lethal dose (depending on toxin) from surface-laid baits intended for feral cat control if a precautionary approach was not adopted when baiting. We modelled V. varius bait take using experimental and predictive biophysical modelling approaches to evaluate temporal effects of climate variables on V. varius activity and hence potential for bait removal. Finally we conducted a pre-PAPP baiting site occupancy assessment of V. varius within Wilson Promontory National Park (WPNP) to provide a basis for monitoring any longer term population effects of cat baiting. V. varius removed 7 % of deployed baits from 73 % of bait stations across another study area in Far Eastern Victoria. Daily bait removal was positively correlated with maximum temperature and solar radiation. Biophysical modelling for Far Eastern Victoria predicted that maximum temperatures <19.5 °C prevented V. varius activity and hence opportunity for bait removal. V. varius in WPNP was undetectable suggesting aerial baiting posed limited hazard to this species at this location. Depending how climate influences annual activity patterns and the specific poison, surface-laid baits could pose a significant mortality risk to V. varius. However, use of biophysical models to predict periods of V. varius inactivity may provide a novel means to reduce non-target bait take by this predator.  相似文献   

11.
The small Indian mongoose (Herpestes auropunctatus) is an invasive pest species responsible for damage to native avian, reptile, and amphibian species on Hawaii, Croatia, Mauritius, and several Caribbean Islands, among other regions. Mongoose control has been pursued through a variety of means, with varying success. One toxicant, diphacinone, has been shown to be effective in mongooses and is co-labeled in a rodenticide bait for mongoose control in Hawaii; however, preliminary observations indicate low performance as a mongoose toxicant due likely to poor consumption. We evaluated the efficacy and palatability of 10 commercial rodenticide baits, technical diphacinone powder, and two alternative acute toxicants against mongooses in laboratory feeding trials. We observed poor acceptance and subsequent low overall mortality, of the hard grain-based pellets or block formulations typical of most of the commercial rodenticide baits. The exception was Tomcat® bait blocks containing 0.1% bromethalin, an acute neurotoxin, which achieved up to 100% mortality. Mortality among all other commercial rodenticide formulations ranged from 10 to 50%. Three-day feedings of 0.005% technical diphacinone formulated in fresh minced chicken achieved 100% mortality. One-day feedings of para-aminopropiophenone (PAPP), a chemical that reduces the oxygen-carrying capacity of the blood, achieved 100% mortality at concentrations of 0.10 to 0.15%. Bait acceptance of two sodium nitrite formulations (similar toxic mode of action as PAPP) was relatively poor, and mortality averaged 20%. In general, commercially produced rodenticide baits were not preferred by mongooses and had lower mortality rates compared to freshly prepared meat bait formulations. More palatable baits had higher consumption and achieved higher mortality rates. The diphacinone bait registered for rat and mongoose control in Hawaii achieved 20% mortality and was less effective than some of the other commercial or candidate fresh bait products evaluated in this study.  相似文献   

12.
Engeman R  Betsill C  Ray T 《EcoHealth》2011,8(1):76-81
Despite North Carolina’s long history with feral swine, populations were low or absent in eastern counties until the 1990s. Feral swine populations have since grown in these counties which also contain a high density of commercial production swine (CPS) facilities. Sixteen of the highest swine producing U.S. counties also populated with feral swine are in North Carolina. Disconcertingly, since 2009, positive tests for exposure to swine brucellosis or pseudorabies virus have been found for feral swine. We surveyed 120 CSP facilities across four eastern counties to document the level and perception of feral swine activity around CSP facilities and to identify disease transmission potential to commercial stock. Nearly all facility operators (97%) recognized feral swine were in their counties. Far fewer said they had feral swine activity nearby (18%). Our inspections found higher presence than perceived with feral swine sign at 19% of facilities where operators said they had never observed feral swine or their sign. Nearly 90% expressed concern about feral to domestic disease transmission, yet only two facilities had grain bins or feeders fenced against wildlife access. Due to increasing feral swine populations, recent evidence of disease in feral populations, the importance of swine production to North Carolina’s economy and the national pork industry, and potential for feral-domestic contact, we believe feral swine pose an increasing disease transmission threat warranting a stringent look at biosecurity and feral swine management at North Carolina CPS facilities.  相似文献   

13.
The feral Cat (Felis catus) is a significant threat to Australian fauna, and reducing their impacts is considered an essential action for threatened species conservation. Poison baiting is increasingly being used for the broad scale control of feral cats. In this study, we measured the population response of feral cats to a track‐based baiting programme using Eradicat® baits in the semi‐arid northern wheatbelt region of Western Australia. Over two years, 1500 baits were laid once annually and the response of feral cats was measured using remote cameras in a before–after, control–impact design. There was a significant reduction in feral cat activity in the second year, but not the first. During bait uptake trials, corvids removed the most number of baits, followed by cats and varanids. The lack of a response to baiting in the first year may be due to existing low cat numbers in the baited area and/or the timing of the baiting. We provide a list of key recommendations to help inform future cat baiting programmes and research.  相似文献   

14.
The feral Goat (Capra hircus) has successfully exploited a range of landscapes around the world with occurrences of overabundance resulting in significant damage to ecological values. In forested ecosystems in Australia, there are currently limited means to control the species when compared to the range of management techniques available for other pest animals. To redress this deficiency, we designed a feed structure combined with commercially available salt blocks to attract goats to set locations in a forested study area. Structures that exploited differences in the pedal morphology (foot size and shape) of native herbivores (kangaroos and wallabies) and ungulates (feral goats and deer) were found to be highly target‐specific, with feral goats freely able to access salt blocks, whilst nontarget native species were effectively excluded. Other introduced ungulate species, Fallow Deer (Dama dama) and Red Deer (Cervus elaphus), successfully accessed salt blocks in feed structures but at a considerably lower rate than feral goats. The capacity to present a range of bait types within a target‐specific feed structure, once matched with a humane toxicant, could provide land managers with an additional cost‐effective lethal control tool for future management of feral ungulates, particularly goats.  相似文献   

15.
Serum samples collected from feral and domestic swine (Sus scrofa) in Florida and feral swine in Georgia and Texas were assayed by plaque reduction for their virus neutralizing (VN) antibodies against the porcine transmissible gastroenteritis virus (TGE). None of 560 samples collected from feral swine contained VN antibodies for TGE virus, but experimentally infected feral swine seroconverted. None of 665 samples from domestic swine contained TGE-VN antibodies. These results indicate feral swine are not a significant reservoir for TGE virus in southern states, but are capable of becoming infected and developing VN antibodies against TGE.  相似文献   

16.
Free-ranging wildlife, such as feral swine (Sus scrofa), harbor a variety of diseases that are transmissible to livestock and could negatively impact agricultural production. Information is needed regarding the exposure and infection rates of Mycobacterium bovis and many other diseases and parasites in feral swine occurring in the Texas border region. Our main objective was to determine exposure rates and possible infection rates of M. bovis in feral swine by opportunistically sampling animals from the Texas border region. From June to September 2010, we obtained samples from 396 feral swine and tested 98 samples for M. bovis by histopathology and mycobacteriologic culture. We found no evidence of M. bovis infection. We believe that it is important to periodically and strategically sample feral swine for M. bovis in high-risk areas of the United States because they are capable of becoming reservoirs of the disease.  相似文献   

17.
Free-ranging feral swine (Sus scrofa) are known to be present in at least 32 states of the USA and are continuously expanding their range. Infection with pseudorabies virus (PRV) occurs in feral swine and the primary route of transmission in free-living conditions seems to be venereal. Between 1995 and 1999, naturally infected feral swine and experimentally infected hybrid progeny of feral and domestic swine, were kept in isolation and evaluated for occurrence of latent PRV indigenous to feral swine in sacral and trigeminal ganglia and tonsil. Sacral ganglia were shown, by polymerase chain reaction (PCR) amplification of the thymidine kinase (TK) gene of PRV, to be the most frequent sites of latency of PRV. Nine (56%) of 16 sacral ganglia, seven (44%) of 16 trigeminal ganglia, and five (39%) of 13 tonsils from naturally infected feral swine were positive for PCR amplification of TK sequences of PRV. These tissues were negative for PRV when viral isolation was attempted in Vero cells. DNA sequencing of cloned TK fragments from the sacral ganglia of two feral swine, showed only one nucleotide difference between the two fragments and extensive sequence homology to fragment sequences from various domestic swine PRV strains from China, Northern Ireland, and the USA. The hybrid feral domestic swine, experimentally inoculated with an indigenous feral swine PRV isolate by either the genital or respiratory route, acquired the infection but showed no clinical signs of pseudorabies. Virus inoculated into either the genital or respiratory tract could, at times, be isolated from both these sites. The most common latency sites were the sacral ganglia, regardless of the route and dose of infection in these experimentally infected hybrids. Nine of 10 sacral ganglia, six of 10 trigeminal ganglia, and three of 10 tonsils were positive for PCR amplification of TK sequences. No virus was isolated from these tissues in Vero cells. The demonstration of the sacral ganglia as the most common sites of latency of pseudorabies viruses indigenous to feral swine, supports the hypothesis that these viruses are primarily transmitted venereally, and not by the respiratory route as is common in domestic swine, in which the trigeminal ganglia are the predominant sites of virus latency.  相似文献   

18.
As feral swine (Sus scrofa) populations expand their range and the opportunity for feral swine hunting increases, there is increased potential for disease transmission that may impact humans, domestic swine, and wildlife. From September 2007 to March 2010, in 13 North Carolina, USA, counties and at Howell Woods Environmental Learning Center, we conducted a serosurvey of feral swine for Brucella suis, pseudorabies virus (PRV), and classical swine fever virus (CSFV); the samples obtained at Howell Woods also were tested for porcine circovirus type 2 (PCV-2). Feral swine serum was collected from trapped and hunter-harvested swine. For the first time since 2004 when screening began, we detected B. suis antibodies in 9% (9/98) of feral swine at Howell Woods and <1% (1/415) in the North Carolina counties. Also, at Howell Woods, we detected PCV-2 antibodies in 59% (53/90) of feral swine. We did not detect antibodies to PRV (n=512) or CSFV (n=307) at Howell Woods or the 13 North Carolina counties, respectively. The detection of feral swine with antibodies to B. suis for the first time in North Carolina warrants increased surveillance of the feral swine population to evaluate speed of disease spread and to establish the potential risk to commercial swine and humans.  相似文献   

19.
Between 1995 and 1998, we designed a series of studies in which we attempted to determine the main routes of transmission involved in the natural infection of pseudorabies virus (PRV) indigenous to free-ranging feral swine (Sus scrofa). Naturally infected feral sows transmitted the infection to uninfected feral boars, with which they had been commingled for a 6-wk period. Pseudorabies virus was isolated from boar preputial swabs, but not from nasal swabs. Three of the same PRV-infected feral sows did not transmit the infection to domestic boars during a 16 wk commingling period, despite the fact that they became pregnant. Feral boars, naturally infected with PRV transmitted the virus to domestic gilts while penned together during 6 wk. Pseudorabies virus was isolated from vaginal swabs, but not from nasal swabs of gilts, after 2 and 3 wk of commingling. When the same infected boars were commingled with either feral or domestic boars for 13 wk, PRV transmission did not occur. None of the exposed boars developed neutralizing antibodies or yielded virus from their preputial or nasal swabs. Our results indicate that PRV indigenous to feral swine is preferentially transmitted to feral or domestic swine of the opposite sex by the venereal route. This mode of transmission differs from that seen in the natural transmission of PRV prevalent in domestic swine, where contaminated secretions, excretions and aerosols are responsible for the spread of the virus. Based on these results, we feel that as long as feral swine do not come into direct contact with domestic swine, PRV-infected feral swine probably pose only a limited risk to the success of the National Pseudorabies Eradication Program. The fact that PRV is usually transmitted from feral to domestic swine at the time of mating would indicate that the isolation of domestic herds by the use of a "double fence," should be adequate protection against reinfection with PRV.  相似文献   

20.
Populations of feral swine (Sus scrofa) are estimated to include >2 million animals in the state of Texas, USA, alone. Feral swine damage to property, crops, and livestock exceeds $50 million annually. These figures do not include the increased risks and costs associated with the potential for feral swine to spread disease to domestic livestock. Thus, effective bio-security measures will be needed to quickly isolate affected feral swine populations during disease outbreaks. We evaluated enclosures built of 0.86-m-tall traditional hog panels for containing feral swine during 35 trials, each involving 6 recently caught animals exposed to increasing levels of motivation. During trials, fences were 97% successful when enclosures were entered by humans for maintenance purposes; 83% effective when pursued by walking humans discharging paintball projectors; and in limited testing, 100% successful when pursued and removed by gunners in a helicopter. In addition to being effective in containing feral swine, enclosures constructed of hog panels required simple hand tools, took <5 min/m to erect, and were inexpensive ($5.73/m excluding labor) relative to other fencing options. As such, hog-panel fences are suitable for use by state and federal agencies for rapid deployment in disease response situations, but also exhibit utility for general control of other types of damage associated with feral swine. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号