首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Despite recent advances, the structure and dynamics of membrane proteins in cell membranes remain elusive. We implemented transition metal ion fluorescence resonance energy transfer (tmFRET) to measure distances between sites on the N-terminal ankyrin repeat domains (ARDs) of the pain-transducing ion channel TRPV1 and the intracellular surface of the plasma membrane. To preserve the native context, we used unroofed cells, and to specifically label sites in TRPV1, we incorporated a fluorescent, noncanonical amino acid, L-ANAP. A metal chelating lipid was used to decorate the plasma membrane with high-density/high-affinity metal-binding sites. The fluorescence resonance energy transfer (FRET) efficiencies between L-ANAP in TRPV1 and Co2+ bound to the plasma membrane were consistent with the arrangement of the ARDs in recent cryoelectron microscopy structures of TRPV1. No change in tmFRET was observed with the TRPV1 agonist capsaicin. These results demonstrate the power of tmFRET for measuring structure and rearrangements of membrane proteins relative to the cell membrane.  相似文献   

2.
《Biophysical journal》2020,118(8):1861-1875
Many membrane proteins are thought to function as dimers or higher oligomers, but measuring membrane protein oligomerization in lipid membranes is particularly challenging. Förster resonance energy transfer (FRET) and fluorescence cross-correlation spectroscopy are noninvasive, optical methods of choice that have been applied to the analysis of dimerization of single-spanning membrane proteins. However, the effects inherent to such two-dimensional systems, such as the excluded volume of polytopic transmembrane proteins, proximity FRET, and rotational diffusion of fluorophore dipoles, complicate interpretation of FRET data and have not been typically accounted for. Here, using FRET and fluorescence cross-correlation spectroscopy, we introduce a method to measure surface protein density and to estimate the apparent Förster radius, and we use Monte Carlo simulations of the FRET data to account for the proximity FRET effect occurring in confined two-dimensional environments. We then use FRET to analyze the dimerization of human rhomboid protease RHBDL2 in giant plasma membrane vesicles. We find no evidence for stable oligomers of RHBDL2 in giant plasma membrane vesicles of human cells even at concentrations that highly exceed endogenous expression levels. This indicates that the rhomboid transmembrane core is intrinsically monomeric. Our findings will find use in the application of FRET and fluorescence correlation spectroscopy for the analysis of oligomerization of transmembrane proteins in cell-derived lipid membranes.  相似文献   

3.
Phosphatidylinositol transfer proteins (PITP) function in signal transduction and in membrane traffic. Studies aimed at elucidating the mechanism of action of PITP have yielded a singular theme; the activity of PITP stems from its ability to transfer phosphatidylinositol (PI) from its site of synthesis to sites of cellular activity and to stimulate the local synthesis of phosphorylated forms of PI. The participation of various phosphoinositides in EGF signal transduction and in the trafficking of the EGF receptors is well documented. Using fluorescence lifetime imaging microscopy (FLIM) to measure fluorescence resonance energy transfer (FRET) between EGFP-PITP proteins and fluorescently labeled phospholipids, we report that PITPalpha and PITPbeta can dynamically interact with PI or PC at the plasma membrane when stimulated with EGF. Additionally, PITPbeta is localized at the Golgi, and EGF stimulation resulted in enhanced FRET. Inhibitors of the PLC and the Ras/MAP kinase pathway were both able to inhibit the EGF-stimulated interaction of PITPalpha with PI at the plasma membrane. The mobility of PITP proteins was determined by using fluorescence recovery after photobleaching (FRAP), and EGF stimulation reduced the mobility at the plasma membrane. We conclude that the dynamic behavior of PITPalpha and PITPbeta in vivo is a regulated process involving multiple mechanisms.  相似文献   

4.
The ability to assay a variety of metals by noninvasive methods has applications in both biomedical and environmental research. Green fluorescent protein (GFP) is a protein isolated from coelenterates that exhibits spontaneous fluorescence. GFP does not require any exogenous cofactors for fluorescence, and can be easily appended to other proteins at the DNA level, producing a fluorescence-labeled target protein in vivo. Metals in close proximity to chromophores are known to quench fluorescence in a distance-dependent fashion. Potential metal binding sites on the surface of GFP have been identified and mutant proteins have been designed, created, and characterized. These metal-binding mutants of GFP exhibit fluorescence quenching at lower transition metal ion concentrations than those of the wild-type protein. These GFP mutants represent a new class of protein-based metal sensors.  相似文献   

5.
Metals are thought to play a role in the structure of many viruses. The crystal structure of the T=3 icosahedral cowpea chlorotic mottle virus (CCMV) suggests the presence of 180 unique metal-binding sites in the assembled protein cage. Each of these sites is thought to involve the coordination of the metal by five amino acids contributed from two adjacent coat protein subunits. We have used fluorescence resonance energy transfer (FRET), from tryptophan residues proximal to the putative metal-binding sites, to probe Tb(III) binding to the virus. Binding of Tb(III) was investigated on the wild-type virus and a mutant where the RNA binding ability of the virus was removed. Tb(III) binding was observed both in the wild-type virus (Kd=19 M) and the mutant (Kd=17 M), as monitored by the increase in Tb(III) fluorescence (545 nm) and concomitant decrease in tryptophan fluorescence (342 nm). Competitive binding experiments showed Ca(II) to have about 100-fold less affinity for the binding sites (Kd=1.97 mM). This is the first direct evidence of metal binding to the putative metal-binding sites, originally suggested from the crystal structure of CCMV.  相似文献   

6.
Chloride intracellular channel proteins (CLICs) differ from most ion channels as they can exist in both soluble and integral membrane forms. The CLICs are expressed as soluble proteins but can reversibly autoinsert into the membrane to form active ion channels. For CLIC1, the interaction with the lipid bilayer is enhanced under oxidative conditions. At present, little evidence is available characterizing the structure of the putative oligomeric CLIC integral membrane form. Previously, fluorescence resonance energy transfer (FRET) was used to monitor and model the conformational transition within CLIC1 as it interacts with the membrane bilayer. These results revealed a large-scale unfolding between the C- and N-domains of CLIC1 as it interacts with the membrane. In the present study, FRET was used to probe lipid-induced structural changes arising in the vicinity of the putative transmembrane region of CLIC1 (residues 24-46) under oxidative conditions. Intramolecular FRET distances are consistent with the model in which the N-terminal domain inserts into the bilayer as an extended α-helix. Further, intermolecular FRET was performed between fluorescently labeled CLIC1 monomers within membranes. The intermolecular FRET shows that CLIC1 forms oligomers upon oxidation in the presence of the membranes. Fitting the data to symmetric oligomer models of the CLIC1 transmembrane form indicates that the structure is large and most consistent with a model comprising approximately six to eight subunits.  相似文献   

7.
A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids.  相似文献   

8.
BACKGROUND: Metallochaperone proteins function in the trafficking and delivery of essential, yet potentially toxic, metal ions to distinct locations and particular proteins in eukaryotic cells. The Atx1 protein shuttles copper to the transport ATPase Ccc2 in yeast cells. Molecular mechanisms for copper delivery by Atx1 and similar human chaperones have been proposed, but detailed structural characterization is necessary to elucidate how Atx1 binds metal ions and how it might interact with Ccc2 to facilitate metal ion transfer. RESULTS: The 1.02 A resolution X-ray structure of the Hg(II) form of Atx1 (HgAtx1) reveals the overall secondary structure, the location of the metal-binding site, the detailed coordination geometry for Hg(II), and specific amino acid residues that may be important in interactions with Ccc2. Metal ion transfer experiments establish that HgAtx1 is a functional model for the Cu(I) form of Atx1 (CuAtx1). The metal-binding loop is flexible, changing conformation to form a disulfide bond in the oxidized apo form, the structure of which has been solved to 1.20 A resolution. CONCLUSIONS: The Atx1 structure represents the first structure of a metallochaperone protein, and is one of the largest unknown structures solved by direct methods. The structural features of the metal-binding site support the proposed Atx1 mechanism in which facile metal ion transfer occurs between metal-binding sites of the diffusible copper-donor and membrane-tethered copper-acceptor proteins. The Atx1 structural motif represents a prototypical metal ion trafficking unit that is likely to be employed in a variety of organisms for different metal ions.  相似文献   

9.
Tang J  Signarvic RS  DeGrado WF  Gai F 《Biochemistry》2007,46(48):13856-13863
Many antimicrobial peptides undergo a coil-to-helix transition upon binding to membranes. While this conformational transition is critical for function, little is known about the underlying mechanistic details. Here, we explore the membrane-mediated folding mechanism of an antimicrobial peptide, mastoparan X. Using stopped-flow fluorescence techniques in conjunction with a fluorescence resonance energy transfer (FRET) pair, p-cyanophenylalanine (donor) and tryptophan (acceptor), we were able to probe, albeit in an indirect manner, the membrane-mediated folding kinetics of this peptide. Our results show that the association of mastoparan X with model lipid vesicles proceeds with biphasic kinetics. The first step shows a large change in the FRET signal, indicating that the helix forms early in the time course of the interaction, while the second step where a further increase in tryptophan fluorescence is observed presumably reflects deeper insertion of the peptide into the bilayer. Additional kinetic studies on a double mutant of mastoparan X, designed to form a nucleation site for alpha-helix formation through coordination with a metal ion (e.g., Zn2+ or Ni2+), indicate that while the coil-to-helix transition occurs in the first step, it follows the rate-determining docking of the peptide onto the membrane surface. Taken together, these results indicate that the initial association of the peptide with the membrane occurs in a nonhelical conformation, which rapidly converts to a helical state within the anisotropic environment of the bilayer surface.  相似文献   

10.
11.

Background

Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain.

Methods

We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins.

Results

We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88.

Conclusions

We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.  相似文献   

12.
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or F?rster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs.  相似文献   

13.
Xia Z  Liu Y 《Biophysical journal》2001,81(4):2395-2402
Green fluorescence protein (GFP)-based fluorescence resonance energy transfer (FRET) is increasingly used in investigation of inter- and intramolecular interactions in living cells. In this report, we present a modified method for FRET quantification in cultured cells using conventional fluorescence microscopy. To reliably measure FRET, three positive control constructs in which a cyan fluorescence protein and a yellow fluorescence protein were linked by peptides of 15, 24, or 37 amino acid residues were prepared. FRET was detected using a spectrofluorometer, a laser scanning confocal microscope, and an inverted fluorescence microscope. Three calculation methods for FRET quantification using fluorescence microscopes were compared. By normalization against expression levels of GFP fusion proteins, the modified method gave consistent FRET values that could be compared among different cells with varying protein expression levels. Whole-cell global analysis using this method allowed FRET measurement with high spatial resolutions. Using such a procedure, the interaction of synaptic proteins syntaxin and the synaptosomal associated protein of 25 kDa (SNAP-25) was examined in PC12 cells, which showed strong FRET on plasma membranes. These results demonstrate the effectiveness of the modified method for FRET measurement in live cell systems.  相似文献   

14.
The monocarboxylate (lactate) transporters MCT1 and MCT4 require the membrane-spanning glycoprotein CD147 for their correct plasma membrane expression and function. We have successfully expressed CD147 and MCT1 tagged on their C or N termini with either the cyan (CFP) or yellow (YFP) variants of green fluorescent protein. The tagged proteins were correctly targeted to the plasma membrane of COS-7 cells and were functionally active. Measurements of fluorescence resonance energy transfer (FRET) between all combinations of the tagged proteins were made. FRET was observed when either the C or N terminus of MCT1 (intracellular) is tagged with CFP or YFP and co-expressed with CD147 tagged with YFP or CFP on the C terminus (intracellular) but not the N terminus (extracellular). FRET was also observed between two CD147 molecules when both YFP and CFP were on the C terminus but not when both were on the N terminus or one on either end. No FRET was observed between MCT1-YFP and MCT-CFP in any combination. A wide range of controls including photobleaching were employed to confirm that where FRET was observed, it was not an artifact of direct excitation of YFP by the CFP excitation laser. It was also shown that nonspecific overcrowding of proteins did not induce FRET. Because FRET only occurs between two fluorophores if they are less than 100 A apart and in a suitable orientation, our data provide important information on the topology of CD147 and MCT1 within the plasma membrane. The minimum configuration consistent with the data is a dimer of CD147 associating with two MCT1 molecules such that the C terminus of CD147 in the cytosol is close to the C terminus of its partner CD147 and to the C and N termini of an associated MCT1 molecule. FRET may provide a non-invasive technique for measuring changes in these interactions in living cells.  相似文献   

15.
Single molecule FRET for the study on structural dynamics of biomolecules   总被引:2,自引:0,他引:2  
Single molecule fluorescence resonance energy transfer (FRET) is the technique that has been developed by combining FRET measurement and single molecule fluorescence imaging. This technique allows us to measure the dynamic changes of the interaction and structures of biomolecules. In this study, the validity of the method was tested using fluorescence dyes on double stranded DNA molecules as a rigid spacer. FRET signals from double stranded DNA molecules were stable and their average FRET values provided the distance between the donor and acceptor in agreement with B-DNA type helix model. Next, the single molecule FRET method was applied to the studies on the dynamic structure of Ras, a signaling protein. The data showed that Ras has multiple conformational states and undergoes transition between them. This study on the dynamic conformation of Ras provided a clue for understanding the molecular mechanism of cell signaling switches.  相似文献   

16.
BACKGROUND: Fluorescence resonance energy transfer (FRET) is a powerful technique for measuring molecular interactions at Angstrom distances. We present a new method for FRET that utilizes the unique spectral properties of variants of the green fluorescent protein (GFP) for large-scale analysis by flow cytometry. METHODS: The proteins of interest are fused in frame separately to the cyan fluorescent protein (CFP) or the yellow fluorescent protein (YFP). FRET between these differentially tagged fusion proteins is analyzed using a dual-laser FACSVantage cytometer. RESULTS: We show that homotypic interactions between individual receptor chains of tumor necrosis factor receptor (TNFR) family members can be detected as FRET from CFP-tagged receptor chains to YFP-tagged receptor chains. Noncovalent molecular complexation can be detected as FRET between fusions of CFP and YFP to either the intracellular or extracellular regions of the receptor chains. The specificity of the assay is demonstrated by the absence of FRET between heterologous receptor pairs that do not biochemically associate with each other. Interaction between a TNFR-like receptor (Fas/CD95/Apo-1) and a downstream cytoplasmic signaling component (FADD) can also be demonstrated by flow cytometric FRET analysis. CONCLUSIONS: The utility of spectral variants of GFP in flow cytometric FRET analysis of membrane receptors is demonstrated. This method of analyzing FRET allows probing of noncovalent molecular interactions that involve both the intracellular and extracellular regions of membrane proteins as well as proteins within the cells. Unlike biochemical methods, FRET allows the quantitative determination of noncovalent molecular associations at Angstrom level in living cells. Moreover, flow cytometry allows quantitative analyses to be carried out on a cell-by-cell basis on large number of cells. Published 2001 Wiley-Liss, Inc.  相似文献   

17.
Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum.  相似文献   

18.
To obtain thermodynamic information about interactions between transmembrane helices in integral membrane proteins, partial unfolding of bacterioopsin in ethanol/water mixtures was studied by F?rster-type resonance energy transfer (FRET) from tryptophan to a dansyl group on Lys 41. Tryptophan to dansyl FRET was detected by measuring sensitized emission at 490-500 nm from 285 nm excitation. FRET was observed in dansylbacterioopsin in apomembranes and in detergent micelles but not in 90% ethanol/water or in the chymotrypsin fragment C2 (residues 1-71). The main fluorescence donors are Trp 86 and Trp 182. Increase of FRET from C2 with added chymotrypsin fragment C1 (residues 72-248) provides an estimate of the C1-C2 association constant as 7.7 x 10(6) M(-1). With increasing ethanol concentration, the FRET signal from dansylbacterioopsin in detergent micelles disappeared with a sharp transition above 60% ethanol. No transition occurred in Trp fluorescence from bacterioopsin lacking the dansyl acceptor, nor did dansyl model compounds undergo a similar transition. Light scattering measurements show that the detergent micelles dissipate below 50% ethanol. Thus the observed transition is likely to be a partial unfolding of bacterioopsin. Assuming a two-state unfolding model, the free energy of unfolding was obtained by extrapolation as 9.0 kcal/mol. The slope of the transition (m-value) was -0.8 kcal mol(-1) M(-1). The unfolding process probably involves dissociation of several helices. The rate of association was measured by stopped-flow fluorometry. Two first-order kinetic processes were observed, having approximately equal weights, with rate constants of 2.32 s (-1) and 0.185 s(-1).  相似文献   

19.
Babor M  Gerzon S  Raveh B  Sobolev V  Edelman M 《Proteins》2008,70(1):208-217
Metal ions are crucial for protein function. They participate in enzyme catalysis, play regulatory roles, and help maintain protein structure. Current tools for predicting metal-protein interactions are based on proteins crystallized with their metal ions present (holo forms). However, a majority of resolved structures are free of metal ions (apo forms). Moreover, metal binding is a dynamic process, often involving conformational rearrangement of the binding pocket. Thus, effective predictions need to be based on the structure of the apo state. Here, we report an approach that identifies transition metal-binding sites in apo forms with a resulting selectivity >95%. Applying the approach to apo forms in the Protein Data Bank and structural genomics initiative identifies a large number of previously unknown, putative metal-binding sites, and their amino acid residues, in some cases providing a first clue to the function of the protein.  相似文献   

20.
A novel protein molecular targeting system was created using a cytoplasmic face of a plasma membrane-targeting system in Saccharomyces cerevisiae. The technique involves a molecular display for the creation of a novel reaction site and interaction sites in the field of biotechnology. In a model system, a fluorescent protein was targeted as a reporter to the cytoplasmic face of the plasma membrane. The C-terminal transmembrane domain (CTM) of Ras2p and Snc2p was examined as the portions with anchoring ability to the cytoplasmic face of the plasma membrane. We found that the CTM of Snc2p targeted the enhanced cyan fluorescent protein (ECFP)–protein A fusion protein on the cytoplasmic face of the plasma membrane more strongly than that of Ras2p. To develop it for use as a detection system for protein–protein interactions, the Fc fragment of IgG (Fc) was genetically fused with the enhanced yellow fluorescent protein (EYFP) and expressed in the cytoplasm of the ECFP–protein A-anchored cell. A microscopic analysis showed that fluorescence resonance energy transfer (FRET) between ECFP–protein A and EYFP–Fc occurred, and the change in fluorescence was observed on the cytoplasmic face of the plasma membrane. The detection of protein–protein interactions at the cytoplasmic face of a plasma membrane using FRET combined with a cytoplasmic face-targeting system for proteins provides a novel method for examining the molecular interactions of cytoplasmic proteins, in addition to conventional methods, such as the two-hybrid method in the nuclei. S. Shibasaki and K. Kuroda equally contributed to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号