首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Aims Ants (Hymenoptera: Formicidae) of the Baja California peninsula are poorly known, with information based largely on scattered museum and literature records. We provide the first comprehensive account of ant species occurring on the peninsula, we examine distribution patterns, and we assess the ‘peninsular effect’ which predicts that species richness declines from the base to the tip of a peninsula. Location Peninsula of Baja California, Mexico. Methods Data collection involved examining, identifying and recording label data from c. 2350 series of ants. These records provide a provisional, if incomplete, species list. We applied the incidence‐based estimator, Chao‐2, to our data base of specimen records to estimate the total number of ant species on the peninsula. We assessed endemism by comparing our peninsular species list to those from adjacent states. The peninsular effect was tested by comparing genus and species level richness between the two states of Baja California, and across five latitudinal blocks. Results We document 170 native ant species in thirty‐three genera, plus six non‐native species, in Baja California. It seems likely that additional species remain to be discovered: the Chao‐2 estimator of species richness, at 206.0 species, is about 20% higher than our observed species richness. About 30% of the species and 20% of the genera are restricted within Baja California to the relatively mesic California Floristic Province of north‐western Baja California. Nearly all of these species also occur in California. Forty‐seven species (27.6%) are peninsula endemics. Using our entire data set, the peninsular effect appears to be strong, with about twice as many species in the northern state of Baja California than are recorded from the southern state of Baja California Sur; the ratio of genera is 33 to 24. However, this effect becomes weak at the species level and absent at the genus level when minimizing habitat effects by omitting species restricted to the California Floristic Province. At a finer scale, across latitudinal blocks of about 1.9°, the number of species declines towards central portions of the peninsula and then increases in the Cape Region. Nine ant species display strongly disjunct distributions, and these occur in two general patterns: peninsula disjuncts and peninsula–mainland disjuncts. Main conclusions The Baja California peninsula supports a diverse and distinctive ant fauna, with the proportion of endemic species similar to that displayed by plants. Patterns of species and genus richness across the five latitudinal blocks provide poor support for the peninsular effect. Moreover, habitat diversity, especially that related to topographic relief, appears to be the most important factor affecting the gradient of ant species richness in Baja California. Additional collections are needed to develop a more complete species list and to determine the boundaries and status of many species. Nevertheless, the present data base provides a useful starting point for understanding the evolution of ant assemblages in Baja California and for comparison with peninsular patterns in other taxa.  相似文献   

2.
Bernardi G  Lape J 《Molecular ecology》2005,14(13):4085-4096
The Baja California region provides a natural setting for studying the early mechanisms of allopatric speciation in marine systems. Disjunct fish populations from several species that occur in the northern Gulf of California and northern Pacific coast of Baja California, but are absent from its southern shores, were previously shown to be genetically isolated, making them excellent candidates for studying allopatry. In addition, one of these species, the sargo Anisotremus davidsonii, has two pairs of congeneric Panamic trans-isthmian geminate species that allow for internal molecular clock calibration. Phylogeographic and demographic approaches based on mitochondrial (cytochrome b) and nuclear (S7 ribosomal protein) sequences showed that A. davidsonii entered the gulf from the south, and later colonized the Pacific coast, approximately 0.6-0.16 million years ago. Pacific coast colonization may have used a route either around the southern cape of Baja California or across the peninsula through a natural seaway. However, while several seaways have been described from different geological times, none matches the dates of population disjunction, yet much geological work remains to be done in that area. At the present time, there is no evidence for dispersal around the southern tip of the Baja California Peninsula. Signatures of incipient allopatric speciation were observed, such as the reciprocal monophyly of disjunct populations for the mitochondrial marker. However, other characteristics were lacking, such as a strong difference in divergence and coalescence times. Taken together, these results suggest that disjunct populations of A. davidsonii may be consistent with the earliest stages of allopatric speciation.  相似文献   

3.
Phylogenetic analyses of complete mitochondrial cytochrome b sequences support the monophyly of pocket gopher (Thomomys bottae) populations from the 1000 km length of the Baja California peninsula of Mexico, relative to other geographical segments of the species range in western North America. The Baja California peninsula is an area that encompasses considerable ecomorphological and infraspecific diversity within this pocket gopher species. However, detailed population analyses encompassing 35 localities distributed over the southern half of the peninsula reveal only trivial phylogeographical structure. Rather, most of the 72 unique 500-base pair haplotypes examined from 142 individuals is restricted to single populations, although a few haplotypes are shared broadly across geography. Individual populations are typically comprised of haplotype sets from different branches in a network of relationships. Analysis of molecular variance (amova) indicates that approximately half of the total pool of variation is contained among individuals within local populations, and that only about 25% can be explained by the regional subdivisions of current subspecies distributions or physiographic realms. A hypothesized historical vicariant event that has been causally linked to the phylogeographical structure of other, codistributed species has had little influence on these pocket gopher populations, explaining only 13% of the total variation. The temporal depth, estimated by coalescence parameters, of the haplotype lineage in Baja California is relatively recent, approximately 300,000 generations; both the mismatch distribution of pairwise comparisons and a significantly positive exponential growth estimate support a recent history of expanding populations; but current, or recent past, migration estimates have remained small, are largely unidirectional from north to south, and weak isolation by distance is present. All data suggest that pocket gophers have relatively recently invaded the southern half of peninsular Baja California, with the genetic signature of expansion still evident but with sufficient time having lapsed to result in a weak isolation by distance pattern. The geographical assemblage of sampled populations thus appears as a meta-population, with limited gene flow contrasting with random haplotype loss due to drift in small, localized populations.  相似文献   

4.
We report on a latitudinal pattern in the structure and species composition of epibenthic macroinvertebrate communities on rocky reefs along a gradient of eight degrees of latitude in the Gulf of California. We provide quantitative evidence of a prominent shift in the taxa dominating these communities, particularly the sessile taxa (Cnidaria, Bivalvia, Annelida, Ascidiacea and Porifera). This pattern was not found in non-sessile taxa (Echinodermata, Decapoda, Cephalopoda, Gastropoda and Polycladida). Based on Bray–Curtis similarity and indicator species analysis we found that the macroinvertebrates of rocky reefs in the Gulf of California are distributed in three broad regions, indicating that sessile taxa are creating such a structure and are related to environmental changes tied to latitude. The northern region (>28° N) was a temperate zone with the coolest water in winter and highest chlorophyll a concentrations, where Octocorallia of the genus Muricea were the dominant taxa. The central region (~24–28° N) had a mix of oceanographic features of the northern and southern regions and was dominated by Echinodermata in terms of species richness and density. The southern region (<24° N) is a subtropical zone with typically warm and clear water, and dominated by Hexacorallia (stony corals). The southern area was less diverse and had lower densities than the central and northern areas. These three communities correspond to known oceanographic discontinuities in the Gulf of California. This implies that future coastal management plans and conservation efforts in the Gulf of California must be regionalized to support their distinct ecological communities.  相似文献   

5.
Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should have affected multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja Peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. For some fish species, the signal of this vicariance in mtDNA has been eroded by gene flow and is not evident with classic, equilibrium measures of population structure. Yet, significant divisions are apparent in coalescent analyses that jointly estimate divergence with gene flow. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limit gene exchange between biogeographic regions and help maintain evidence of past vicariance.  相似文献   

6.
The Baja California killifish, Fundulus lima, is found in six desert oases of the southern Baja California Peninsula, Mexico. The recent introduction of exotic fishes, particularly redbelly tilapia, have impacted the ecology of Fundulus lima such that it is now endangered. Plans of relocating F. lima to bodies of freshwater that are free of exotics have been proposed, however little is know about the genetic identity of the current populations. In this study, we examined the mitochondrial control region of F. lima samples from 4 oases, and in addition, compared these samples to their sister species, the California killifish F.␣parvipinnis. Using a combination of phylogenetic and coalescent approaches, we were able to determine that the two subspecies of the California killifish, F. p.␣brevis, and F. p. parvipinnis, and F. lima form an unresolved trichotomy that diverged between 200,000 years and 400,000 years ago. The one F. lima individual that we were able to collect in the southernmost oasis grouped with the southern subspecies of the California killifish, F. parvipinnis brevis. In contrast, we found that the 3 northern oases grouped together in a “Fundulus lima” clade. Each oasis is genetically distinct, yet there is no evidence of a␣marked genetic bottleneck in any populations (Haplotype diversity between 0.5 and 0.8). Future relocation plans will therefore need to be done cautiously to preserve the genetic identity of the original populations.  相似文献   

7.
The round stingray, Urobatis halleri, is a viviparous elasmobranch that inhabits inshore, benthic habitats ranging from the western U.S.A. to Panama. The population genetic structure of this species was inferred with seven polymorphic microsatellite loci in samples collected at three sites in coastal southern California, one near Santa Catalina Island, California and one in the eastern Gulf of California. Urobatis halleri is relatively common, but little is known of its movement patterns or population structure. Small FST values (?0·0017 to 0·0005) suggested little structure among coastal populations of southern and Baja California. The population sampled at Santa Catalina Island, which is separated by a deep‐water channel from the coastal sites, however, was significantly divergent (large FST, 0·0251) from the other populations, suggesting low connectivity with coastal populations. The Santa Catalina Island population also had the lowest allele richness and lowest average heterozygosity, suggesting recent population bottlenecks in size.  相似文献   

8.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

9.
Abstract. We analysed the biogeographic patterns of woody legumes in the Baja California peninsula, NW Mexico. From the specimen labels of eight herbaria, we digitized 4205 records from 78 species, and projected them onto a grid of 205 cartographic cells (20’ longitude × 15’ latitude). Most species followed distribution patterns that coincide with floristic subdivisions of the peninsula. Endemism is high, reaching 60–70% in the centre of the peninsula, where the driest deserts are found and where significant floristic changes took place during Pleistocene glacial events. The number of cartographic cells (i.e. their geographic ranges) were log‐normally distributed, as has been reported for many other taxa. Floristic richness was found to be clumped around some cells where the observed richness is significantly higher than could be expected from chance variation. We tested the hypothesis that these ‘hotspots’ could be attributable to great collection efforts or to large land surfaces, but we still found 16 cells where richness is significantly high once these two factors are accounted for. Species richness and micro‐endemism increase towards the south, conforming to Rapoport's rule that predicts that species ranges become smaller towards the equator while richness increases. The floristic hotspots for woody legumes in Baja California occur in the Cape Region and along the Sierra de la Giganta in the southern Gulf Coast, where 77% of the total peninsular legume flora can be found. These hotspots are mostly unprotected, and should be considered priority areas for future conservation efforts.  相似文献   

10.
Here, we report for the first time the presence of Dictyota cyanoloma in southern California. Dictyota cyanoloma is conspicuous in harbors and bays by its distinctive bright blue‐iridescent margins. This species was originally described from Europe, but subsequent studies have revealed that it represented an introduction from Australia. The current distribution of D. cyanoloma comprises southern Australia and the North East Atlantic, including the Mediterranean Sea and the Macaronesian islands. The presence of D. cyanoloma in southern California is supported by molecular cox1 and psbA gene sequences. A reconstruction of the invasive history based on nine polymorphic microsatellite markers reveals a close affinity of the Californian specimens with European populations. Dictyota cyanoloma in the United States appears to be (so far) restricted to the Californian coast from San Diego Bay in the south to Santa Catalina Island and Long Beach Harbor in the north. A correlative species distribution model suggests gradually declining habitat suitability north of the Southern Californian Bight and high suitability in Baja California, including the Gulf of California. Finally, its widespread abundance in bays and harbors suggests shipping is a likely transport mechanism.  相似文献   

11.

Aim

Many studies have investigated the phylogeographic history of species on the Baja California Peninsula, and they often show one or more genetic breaks that are spatially concordant among many taxa. These phylogeographic breaks are commonly attributed to vicariance as a result of geological or climatic changes, followed by secondary contact when barriers are no longer present. We use restriction‐site associated DNA sequence data and a phylogeographic model selection approach to explicitly test the secondary contact hypothesis in the red diamond rattlesnake, Crotalus ruber.

Location

Baja California and Southern California.

Methods

We used phylogenetic and population clustering approaches to identify population structure. We then used coalescent methods to simultaneously estimate population parameters and test the fit of phylogeographic models to the data. We used ecological niche models to infer suitable habitat for C. ruber at the Last Glacial Maximum (LGM).

Results

Crotalus ruber is composed of distinct northern and southern populations with a boundary near the town of Loreto in Baja California Sur. A model of isolation followed by secondary contact provides the best fit to the data, with both divergence and contact occurring in the Pleistocene. We also identify a genomic signature of northern range expansion in the northern population, consistent with LGM niche models showing that the northern‐most portion of the range of C. ruber was not suitable habitat during the LGM.

Main conclusions

We provide the first explicitly model‐based test of the secondary contact model in Baja California and show that populations of C. ruber were isolated before coming back into contact near Loreto, a region that shows phylogeographic breaks for other taxa. Given the timing of divergence and contact, we suggest that climatic fluctuations have driven the observed phylogeographic structure observed in C. ruber and that they may have driven similar patterns in other taxa.  相似文献   

12.
The following ten new species of the ant genus Temnothorax are described and illustrated: T. anaphalantus (California, Baja California), T. arboreus (California), T. caguatan (Oregon, California, Baja California), T. morongo (California, Baja California), T. myrmiciformis (California, Baja California), T. nuwuvi (Nevada), T. paiute (California, Nevada), T. pseudandrei (Arizona, California), T. quasimodo (California) and T. wardi (California). A key to workers of the twenty-two Temnothorax species known or expected to occur in California is provided.  相似文献   

13.
The Sierra de La Laguna, in the southern part of the state of Baja California Sur, Mexico, was decreed a biosphere reserve in 1994. It harbors relict plant communities with a high level of endemism. Floristic research has established that the two main communities, the oak–pine woodland (OPW) and the dry tropical forest (TDF), harbor 43 and 33 endemic species, respectively. We segregate the reserve surface into seven major habitats and each endemic species were assigned a hierarchic value into an abundance-distribution scale, useful as dominance ranking. Using such scale, we found that almost half of the species are in the lowest rank (low abundance and aggregate distribution). Using GIS, we obtain the surface for each habitat, where mountainsides represent the largest in the reserve area. We obtained an index of importance from the proportion of endemic species by habitat and its surface occupied, founding that, in spite of the small and fragmented nature of the upland riparian habitats, they have the greatest index value. Consequently, for future conservation plans in the reserve, these habitats should be considered remarkable sites, meriting better attention to ensure endemic plant preservation. Also, since 86% of the endemic species appear in one, two or three habitats, a high dependency on particular environmental conditions is suggested for them.  相似文献   

14.
Question: Can we recognize areas of high endemism and high endemic richness, using data from collections, and what are the ecological variables that best explain these areas? Location: Peninsula of Baja California, Mexico. Methods: We analysed the distribution of 723 endemic vascular plants species along the peninsula of Baja California and neighbouring islands distributed in 218 cartographic cells 15’ x 20’ in size. By means of a residual analysis, we identified areas of significantly high endemic species richness, and we calculated the degree of endemicity (or rarity) in each cell by giving to each species a weight factor inversely proportional to the land area it covers. Results: Nine regions of high‐endemicity and/or high endemic species richness were found. Discussion and conclusions: The analyses of rarity and endemic species richness showed two contrasting scenarios: High endemicity values in oceanic and sky islands accounts for a high number of species with a restricted distribution, promoted most likely by genetic isolation and high environmental heterogeneity. High endemic richness along the peninsular coast is related to ecotonal transition along vegetation types. After correcting for collection effort (i.e. the number of specimens collected within a cell), we found the phytogeographic region and altitudinal heterogeneity to be the variables that best predicted endemic richness. Both high endemism and high endemic richness have distinct geographic patterns within our study region. The nine endemic regions provide elements for priority definitions in future conservation programs.  相似文献   

15.
The California killifish, Fundulus parvipinnis, is a marine species that lives in salt marshes, estuaries and wetlands along the California and Baja California coasts. In order to estimate levels of dispersal between different coastal habitats over its range, we have studied six populations using morphological and genetic markers. Lateral line scale and vertebrae counts showed significant differences between individuals collected north of Punta Eugenia and south of Punta Eugenia. Morphological differences across Punta Eugenia were accompanied by large genetic differences at the mitochondrial control region (5.8%). Gene flow was in general very reduced over the range of the species (pairwise average F(st)=0.70, Nm=0.30), with a strong break at Punta Eugenia (F(st)=0.95, Nm=0.03). Such limited interchanges between coastal habitats have important theoretical and conservation implications.  相似文献   

16.
The genetic structure of populations over a wide geographical area should reflect the demographic and evolutionary processes that have shaped a species across its range. We examined the population genetic structure of antelope ground squirrels (Ammospermophilus leucurus) across the complex of North American deserts from the Great Basin of Oregon to the cape region of the Baja California peninsula. We sampled 73 individuals from 13 major localities over this 2500-km transect, from 43 to 22 degrees north. Our molecular phylogeographical analysis of 555 bp of the mitochondrial cytochrome b gene and 510 bp of the control region revealed great genetic uniformity in a single clade that extends from Oregon to central Baja California. A second distinct clade occupies the southern half of the peninsula. The minimal geographical structure of the northern clade, its low haplotype diversity and the distribution of pairwise differences between haplotypes suggest a rapid northward expansion of the population that must have followed a northward desert habitat shift associated with the most recent Quaternary climate warming and glacial retreat. The higher haplotype diversity within the southern clade and distribution of pairwise differences between haplotypes suggest that the southern clade has a longer, more stable history associated with a southern peninsular refugium. This system, as observed, reflects both historical and contemporary ecological and evolutionary responses to physical environmental gradients within genetically homogeneous populations.  相似文献   

17.
David A. Wiggins 《Ecography》1999,22(5):542-547
The peninsula effect, a decrease in species diversity from the base to the tip of peninsulas, has been proposed to explain the relatively poor species diversity of mammals on North American peninsulas. Subsequent work has questioned both the existence of peninsular declines in diversity, as well as the proposed cause (immigration-extinction dynamics). Previous studies of the Baja California avifauna have shown a gradual decrease in the diversity of breeding birds from the base to the tip of the peninsula. Using newly published data on the breeding land birds, I found a decrease only from the base to the middle of the peninsula, with a slight increase in diversity from the middle to the tip. This result is similar to that for other highly vagile taxa (e.g., Chiroptera. Lepidoptera) and is largely due to the coneave diversity gradient of montane species along the peninsula. Habitat associations of the Baja avifauna and the location of potential source populations suggest that: 1) local habitat heterogeneity is likely the single most important factor influencing the avian diversity gradient along the peninsula; and 2) limited immigration of Neotropical species from mainland areas, and of Nearctic species from the base of the peninsula to the montane southern tip is partly responsible for the form of the diversity gradient along the southern half of the peninsula. My results along with those from previous studies, suggest that rather than colonization/extinction dynamics, habitat heterogeneity and the vagility of the taxa considered have the greatest impact on the observed patterns of species diversity along peninsulas,  相似文献   

18.

Aim

Desert springs or oases are the only permanent mesic environments in highly water-limited arid regions. Oases have immense cultural, evolutionary and ecological importance for people and a high number of endemic and relic species. Nevertheless, they are also highly vulnerable ecosystems, with invasive species, overexploitation and climate change being the primary threats. We used the arthropod communities' spatiotemporal diversity and distribution patterns as a proxy to understand biodiversity dynamics in two geographically close but ecologically contrasting and highly threatened ecosystems: deserts and oases.

Location

Baja California Peninsula, Mexico.

Methods

Arthropod communities at five oases and surrounding desert scrub areas were sampled in two seasons. Using DNA metabarcoding and traditional taxonomic surveys, we tried to identify what biotic and abiotic characteristics of the habitat are important drivers of arthropod diversity and how these characteristics can change across spatial and temporal scales.

Results

Over 6200 individuals representing 23 orders were collected. In oasis samples, the community composition fluctuated more in space (i.e. among sites) than in time (i.e. seasons). Thus, seasonal changes did not affect oasis community diversity and composition, but the dissimilarity among sites increased with geographic distance. Moreover, anthropic activities negatively correlated with arthropod diversity in oases. On the other hand, the season, geography (e.g. latitude) and biotic characteristics of the habitat (e.g. sampled scrub species) significantly affected the diversity and composition of the desert arthropod communities.

Main Conclusions

Neutral dynamics (e.g. historical climatic events, dispersal limitation and spatial component) and human impact significantly influenced the biodiversity patterns of each oasis. In contrast, the habitat's seasonal variation and biotic characteristics were the most important variables influencing the diversity of the desert communities. Baja California oases harbour distinct invertebrate communities; therefore, each oasis should be conserved individually to preserve these unique assemblages.  相似文献   

19.
Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans.  相似文献   

20.
The complex geological and ecological processes that have generated high levels of biodiversity and endemism in the Baja California Peninsula have been the subject of intensive study. However, relatively little is known about phylogeography of the iconic endemic palm species of this region. We therefore analyzed a total of 2,294 bp of chloroplast and 738 bp of nuclear sequence data in 169 samples of five native palm species from Baja California, Sonora and Guadalupe Island. We found that Washingtonia and Brahea palms had low levels of genetic diversity and were highly structured, with the majority of species and major geographic regions being characterized by distinct haplotypes. We also found strong support for currently recognized species in Washingtonia, but our results were less clear cut for Brahea due to haplotype sharing. Furthermore, patterns of population structure were broadly consistent with historical vicariant events such as the inundation of the Isthmus of La Paz, the formation of the Sea of Cortez, and the more recent colonization and isolation of Guadalupe Island's palms. Our findings contribute toward a growing appreciation of the complexity of plant responses to past geological changes and also provide valuable baseline genetic data on relict American palm species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号