首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Introgression lines (ILs) are useful tools for precise mapping of quantitative trait loci (QTLs) and the evaluation of gene action or interaction in theoretical studies. A set of 159 ILs carrying variant introgressed segments from Chinese common wild rice (Oryza rufipogon Griff.), collected from Dongxiang county, Jiangxi Province, in the background of Indica cultivar (Oryza sativa L.), Guichao 2, was developed using 126 polymorphic simple sequence repeats (SSR) loci. The 159 ILs represented 67.5% of the genome of O. rufipogon. All the ILs have the proportions of the recurrent parent ranging from 92.4 to 99.9%, with an average of 97.4%. The average proportion of the donor genome for the BC4F4 population was about 2.2%. The mean numbers of homozygous and heterozygous donor segments were 2 (ranging 0–8) and 1 (ranging 0–7), respectively, and the majority of these segments had sizes less than 10 cM. QTL analysis was conducted based on evaluation of yield-related traits of the 159 ILs at two sites, in Beijing and Hainan. For 6 out of 17 QTLs identified at two sites corresponding to three traits (panicles per plant, grains per panicle and filled grains per plant, respectively), the QTLs derived from O. rufipogon were usually associated with an improvement of the target trait, although the overall phenotypic characters of O. rufipogon were inferior to that of the recurrent parent. Of the 17 QTLs, 5 specific QTLs strongly associated with more than one trait were observed. Further analysis of the high-yielding and low-yielding ILs revealed that the high-yielding ILs contained relatively less introgressed segments than the low-yielding ILs, and that the yield increase or decrease was mainly due to the number of grain. On the other hand, low-yielding ILs contained more negative QTLs or disharmonious interactions between QTLs which masked trait-enchancing QTLs. These ILs will be useful in identifying the traits of yield, tolerance to low temperature and drought stress, and detecting favorable genes of common wild rice.  相似文献   

3.
Cheng SH  Zhuang JY  Fan YY  Du JH  Cao LY 《Annals of botany》2007,100(5):959-966
BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.  相似文献   

4.
5.
Two field experiments were conducted in 1995-1996 to determine if there are common yield responses among maize hybrids to larval western corn rootworm, Diabrotica virgifera virgifera LeConte injury. Three yellow dent hybrids, five white food grade dent hybrids, and a popcorn hybrid were included in the study. The minimum level of rootworm injury as measured by root damage ratings (3.2-4.2) that significantly reduced yield was similar across the hybrids included in the study. However, the pattern of yield response to different rootworm injury levels varied among hybrids. This suggests that maize hybrids may inherently differ in their ability to tolerate rootworm injury and partition biomass in response to injury and other stresses. The complex interaction among hybrid, level of injury, and other stresses suggests that a common western corn rootworm injury-yield relationship may not exist within maize.  相似文献   

6.
Sweet corn is a widely distributed crop that generates agricultural waste without significant commercial value. In this study, we show that sweet corn varieties produce large amounts of residual biomass (10 t ha?1) with high content of soluble sugars (25% of dry matter) in a short growing season (3 months). The potential ethanol production from structural and soluble sugars extracted from sweet corn stover reached up to 4400 l ha?1 in the most productive hybrids, 33% of which (1500 l ha?1) were obtained by direct fermentation of free sugars. We found wide genetic variation for biomass yield and soluble sugars content suggesting that those traits can be included as complementary traits in sweet corn breeding programs. Dual‐purpose sweet corn hybrids can have an added value for the farmers contributing to energy generation without affecting food supply or the environment.  相似文献   

7.
8.
A fundamental need for commercialization of sweet sorghum [Sorghum bicolor (L.) Moench] as a bioenergy crop is an adequate seed supply, which will require development of hybrid varieties using dwarf seed-parent lines. A set of six public sweet sorghum A-lines (Dwarf Kansas Sourless, KS9, N36, N38, N39, and N4692) were crossed with a set of six public sweet sorghum cultivars (Brawley, Kansas Collier, Dale, Sugar Drip, Waconia, and Wray). Grain, fiber, and sugar yields were determined, and conversion formulas were applied to estimate ethanol yields. Hybrids were grown in fields at Ithaca, NE, USA, in 1983–1984 fertilized with 112 kg ha?1 N. In terms of yield components and overall ethanol yields, one A-line, N38, was inferior. Average total ethanol yields from hybrids made on the other A-lines were not significantly different, suggesting that any of those five A-lines could be useful seed-parents. With the exception of grain yield, cultivars used as pollen parents were among the highest-performing entries for all traits. For all traits directly contributing to total ethanol yield (grain yield, juice yield, % soluble solids, sugar yield, fiber yield), hybrids were also among the highest-performing entries. Results of this study demonstrate that hybrid sweet sorghum with performance criteria equivalent to existing sweet sorghum cultivars can be produced on the sweet sorghum seed-parent lines A-Dwarf Kansas Sourless, A-KS9, A-N36, A-N39, and A-N4692. Identification of specific seed-parent × pollen parent lines with characteristics best suited for particular growing regions and end-user needs will be critical for commercial hybrid development.  相似文献   

9.

Key message

Two heterotic groups and four heterotic patterns were identified for IRRI hybrid rice germplasm to develop hybrid rice in the tropics based on SSR molecular data and field trials.

Abstract

Information on heterotic groups and patterns is a fundamental prerequisite for hybrid crop breeding; however, no such clear information is available for tropical hybrid rice breeding after more than 30 years of hybrid rice commercialization. Based on a study of genetic diversity using molecular markers, 18 parents representing hybrid rice populations historically developed at the International Rice Research Institute (IRRI) were selected to form diallel crosses of hybrids and were evaluated in tropical environments. Yield, yield heterosis and combining ability were investigated with the main objectives of (1) evaluating the magnitude of yield heterosis among marker-based parental groups, (2) examining the consistency between marker-based group and heterotic performance of hybrids, and (3) identifying foundational hybrid parents in discrete germplasm pools to provide a reference for tropical indica hybrid rice breeding. Significant differences in yield, yield heterosis and combining ability were detected among parents and among hybrids. On average, the hybrids yielded 14.8 % higher than the parents. Results revealed that inter-group hybrids yielded higher, with higher yield heterosis than intra-group hybrids. Four heterotic patterns within two heterotic groups based on current IRRI B- and R-line germplasm were identified. Parents in two marker-based groups were identified with limited breeding value among current IRRI hybrid rice germplasm because of their lowest contribution to heterotic hybrids. Heterotic hybrids are significantly correlated with high-yielding parents. The efficiency of breeding heterotic hybrids could be enhanced using selected parents within identified marker-based heterotic groups. This information is useful for exploiting those widely distributed IRRI hybrid rice parents.  相似文献   

10.
11.
Phenotypic integration is a necessary characteristic of living organisms that results from genetic, developmental, and functional relationships among traits. The nature of these relationships can be influenced by the environment. We examined patterns of phenotypic integration of six species of rapid cycling Brassica and of Raphanus sativus within a phylogenetic context. Specifically, we tested the hypothesis that hybrid species show intermediate levels of integration in morphological and life-history characters compared to their putative parentals. We used matrix correlation tests to examine if cytogenetic relationships or ecological similarities among species partially explained the patterns of phenotypic integration. There was a significant negative relationship between the ecological and cytogenetic matrices, suggesting that more closely related species were ecologically dissimilar. However, neither ecological nor cytogenetic matrices significantly explained differences among species in the pattern of their phenotypic correlations. Set correlation analysis indicated that important traits within the modules and the strength of the correlations within modules differed across species. We also found that there were a greater number of significant correlations between modules than within modules. Hybrid species were more integrated (had greater number of significant trait correlations) than either of their parents, both within and between modules. However, univariate analyses of character means of the hybrid species were not significantly different from the combined mean of their putative parents for 5, 6, or 7 of the 11 phenotypic characters (for Brassica napus, B. juncea and B. carinata, respectively); for the remaining characters, the hybrids were more similar to one of the parents.  相似文献   

12.
The practical utilization of heterosis in crop plants has been greatly facilitated during the past 15 years by the use of cytoplasmic male|sterility for low-cost, large-scale emasculation of the seed parents of hybrids. The method is now being used in commercial production of hybrid onions, sugar beets, field corn, grain sorghum, and petunias. Its use is contemplated for hybrid sweet corn, pop corn, red table beets, fodder beets, fodder sorghum, pearl millet, carrots, and garden peppers.  相似文献   

13.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

14.
The wide adoption of hybrid rice has greatly increased rice yield in the last several decades. The utilization of heterosis facilitated by male sterility has been a common strategy for hybrid rice development. Here, we summarize our efforts in the genetic and molecular understanding of heterosis and male sterility together with the related progress from other research groups. Analyses of F1 diallel crosses show that strong heterosis widely exists in hybrids of diverse germplasms, and inter-subsp...  相似文献   

15.
为了解东乡野生稻(Oryza rufipogon)对低温胁迫的响应机制,对苗期的RNA-seq转录表达谱进行了研究。结果表明,与对照相比,共检测到10 200个差异表达基因(DEGs),其中5 201个上调表达,4 999个下调表达,其中有426个DEGs位于已报道的水稻耐冷QTL区间,且37个为耐冷调控相关的家族基因。GO功能分类和KEGG代谢路径分析表明,核酸结合转录因子活性、氨基酸生物合成以及光合作用代谢等均参与响应低温胁迫过程。实时荧光定量分析表明,ABA响应蛋白基因、MYB转录因子和40S核糖体蛋白SA基因等12个可能与低温胁迫响应相关的DEGs表达模式与RNA-seq的一致。可见,植物激素传导途径和转录因子相关调控基因在东乡野生稻苗期响应低温胁迫过程中起重要作用。  相似文献   

16.
17.
To investigate the genetic basis of drought tolerance in soybean ( Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefeng1 (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and D1b, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.  相似文献   

18.
The dominance model of heterosis explains the superior performance of F1-hybrids via the complementation of deleterious alleles by beneficial alleles in many genes. Genes active in one parent but inactive in the second lead to single-parent expression (SPE) complementation in maize (Zea mays L.) hybrids. In this study, SPE complementation resulted in approximately 700 additionally active genes in different tissues of genetically diverse maize hybrids on average. We established that the number of SPE genes is significantly associated with mid-parent heterosis (MPH) for all surveyed phenotypic traits. In addition, we highlighted that maternally (SPE_B) and paternally (SPE_X) active SPE genes enriched in gene co-expression modules are highly correlated within each SPE type but separated between these two SPE types. While SPE_B-enriched co-expression modules are positively correlated with phenotypic traits, SPE_X-enriched modules displayed a negative correlation. Gene ontology term enrichment analyses indicated that SPE_B patterns are associated with growth and development, whereas SPE_X patterns are enriched in defense and stress response. In summary, these results link the degree of phenotypic MPH to the prevalence of gene expression complementation observed by SPE, supporting the notion that hybrids benefit from SPE complementation via its role in coordinating maize development in fluctuating environments.

The number of single-parent expression complementation patterns is significantly associated with mid-parent heterosis for all surveyed phenotypic traits in maize.  相似文献   

19.
Heterosis Is Prevalent for Multiple Traits in Diverse Maize Germplasm   总被引:1,自引:0,他引:1  

Background

Heterosis describes the superior phenotypes observed in hybrids relative to their inbred parents. Maize is a model system for studying heterosis due to the high levels of yield heterosis and commercial use of hybrids.

Methods

The inbred lines from an association mapping panel were crossed to a common inbred line, B73, to generate nearly 300 hybrid genotypes. Heterosis was evaluated for seventeen phenotypic traits in multiple environments. The majority of hybrids exhibit better-parent heterosis in most of the hybrids measured. Correlations between the levels of heterosis for different traits were generally weak, suggesting that the genetic basis of heterosis is trait-dependent.

Conclusions

The ability to predict heterosis levels using inbred phenotype or genetic distance between the parents varied for the different traits. For some traits it is possible to explain a significant proportion of the heterosis variation using linear modeling while other traits are more difficult to predict.  相似文献   

20.
Hybridization is common and important to the adaptive evolution of plants. Hybridization has resulted in the formation of new species and the introgression of traits between species. This paper discusses the advantages of using hybrid systems to explore the evolution of tolerance to herbivore damage (i.e., the ability to diminish the negative effects of damage on fitness). The major consequence of hybridization likely to make it influential for tolerance evolution is that hybridization generates broad variation in traits that can be selected for or against. In addition to generating greater variation in tolerance to damage and its putative traits (e.g., traits associated with allocation patterns and meristem production), hybridization can generate greater independence among tolerance traits and between tolerance and defense traits. Greater independence may provide a greater ability to discern mechanisms of tolerance, give a greater probability of detecting allocation costs of tolerance, and provide an effective means to evaluate tradeoffs between tolerance and defense. Interspecific hybrid systems can also be used to evaluate the importance of co-adaptation of tolerance traits. Moreover, recombinant hybrids can be used in selection studies focusing on tolerance to damage to discern whether parental combinations of tolerance traits are favored over novel combinations. Research in hybrid systems that investigate the selective importance of tolerance, the patterns of inheritance of tolerance traits, and the genetic architecture of plant species involved can be vital to our evaluation of the adaptive role of tolerance to damage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号