首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: This study aimed to identify the efficacy and toxicity of the FOLFIRI regimen (fluorouracil, leucovorin, and irinotecan) with irinotecan dose escalation plus bevacizumab as first-line chemotherapy for metastatic colorectal cancer (mCRC) via UGT1A1 genotyping. METHODS: We administered bevacizumab plus FOLFIRI with irinotecan dose escalation to treat 70 mCRC patients. The UGT1A1 *1/*1 and *1/*28 genotypes started with a 180-mg/m2 dose of irinotecan, and UGT1A1 *28/*28 genotype started with a dose of 120 mg/m2. The dose of irinotecan was escalated at increasing intervals of 20 to 30 mg/m2 until grade 3/4 adverse events (AEs) occurred. The clinical response rate, toxicity, and survival were analyzed. RESULTS: The clinical response and disease control rates of mCRC patients treated with FOLFIRI plus bevacizumab were significantly better in patients with UGT1A1 *1/*1 and *1/*28 genotypes than in patients with UGT1A1 *28/*28 (P = .006 and P < .001, respectively). Grade 3/4 AEs were significantly more common in mCRC patients with the UGT1A1 *28/*28 genotype (P < .001). Progression-free survival was significantly higher in UGT1A1 *1/*1 and *1/*28 patients (P = .002). mCRC patients who underwent metastasectomy achieved better overall survival than those who did not undergo metastasectomy (P = .015). CONCLUSIONS: Our study showed that mCRC patients with UGT1A1 *1/*1 and *1/*28 genotypes could receive escalated doses of irinotecan to obtain a more favorable clinical outcome without significant AEs.  相似文献   

2.
The formation of beta-D-glucopyranosides (glucuronides) by the UDP-glucuronosyltransferases (UGTs) is a significant metabolic pathway that facilitates the elimination of small hydrophobic molecules such as drugs, dietary constituents, steroids, and bile acids. We elucidate here that an anti-oxidative response leads to induction of UGT1A1 through the Nrf2-Keap1 pathway. When human HepG2 cells were treated with the prooxidants tert-butylhydroquinone and beta-naphthoflavone, cellular UGT1A1 glucuronidation activities were increased. The induction of UGT1A1 proceeded following the overexpression of Nrf2 and was blocked following overexpression of Keap1, demonstrating that Keap1 suppresses Nrf2 activation of the UGT1A1 gene. Loss of function analysis for Nrf2 conducted by small interfering RNA revealed that induction of UGT1A1 was not seen in Nrf2 knock-out cells. To examine the contribution of oxidants toward the regulation of human UGT1A1 in vivo, transgenic mice bearing the human UGT1 locus (Tg-UGT1) were treated with tert-butylhydroquinone. Human UGT1A1 was markedly increased in small and large intestines as well as in liver. Gene mapping experiments including transfections of UGT1A1 reporter gene constructs into HepG2 cells coupled with functional analysis of Nrf2 expression and binding to anti-oxidant-response elements (ARE) resulted in identification of an ARE in the phenobarbital-response enhancer module region of the UGT1A1 gene. The ARE flanks the recently identified Ah receptor xenobiotic-responsive element. The results suggest that Nrf2-Keap1-dependent UGT1A1 induction by prooxidants might represent a key adaptive response to cellular oxidative stress that defends against a variety of environmental insults, including electrophile attacks and chemical carcinogenesis.  相似文献   

3.
Although the circadian pattern of cyclosporine (CSA) pharmacokinetics and toxicity has been described previously in both animal and clinical studies, the mechanism of this action is unknown. The present study compared the pharmacokinetics and experimental nephrotoxicity of chronic CSA in both the genetically-hyperlipidemic rat model and the lean litter-mate. Once daily dosing (25 mg/kg via gavage) was either at the start of the active (1900) or inactive (0700) cycle (Nov 1987 to Jan 1988). Serial serum samples following the final dose were assayed by both polyclonal (nonspecific) and monoclonal (specific for parent CSA) RIA. Renal toxicity was assessed by 24-hr creatinine clearances, fractional clearances of sodium and potassium, and inulin clearances (CIN). Despite a greater than 2-fold increase in serum CSA concentrations, there were no changes in renal function in obese rats dosed at the start of the active period compared to the inactive period. Furthermore, mean CIN of the lean group administered drug at the start of the active period was not significantly different from time-matched placebo-treated lean rats. However, there was an 80% drop in CIN in rats treated with CSA at the start of the inactive period compared to control group. There were no differences in electrolyte handling. Insulin concentrations, independent of time of dosing, were markedly elevated in obese rats dosed CSA compared to placebo-treated obese or both lean groups. Serum triglyceride levels were significantly correlated with pharmacokinetic parameters of total but not parent CSA. In summary, significant differences in toxicity were observed due to time of dosing and lipid profiles. Although the mechanism of this action remains unclear, it appears that increased non-fasting serum triglyceride levels following the active period most likely reduced CSA distribution into kidney tissue preventing the dose-limiting nephrotoxicity.  相似文献   

4.
Although the circadian pattern of cyclosporine (CSA) pharmacokinetics and toxicity has been described previously in both animal and clinical studies, the mechanism of this action is unknown. The present study compared the pharmacokinetics and experimental nephrotoxicity of chronic CSA in both the genetically-hyperlipidemic rat model and the lean litter-mate. Once daily dosing (25 mg/kg via gavage) was either at the start of the active (1900) or inactive (0700) cycle (Nov 1987 to Jan 1988). Serial serum samples following the final dose were assayed by both polyclonal (nonspecific) and monoclonal (specific for parent CSA) RIA. Renal toxicity was assessed by 24-hr creatinine clearances, fractional clearances of sodium and potassium, and inulin clearances (CIN). Despite a greater than 2-fold increase in serum CSA concentrations, there were no changes in renal function in obese rats dosed at the start of the active period compared to the inactive period. Furthermore, mean CIN of the lean group administered drug at the start of the active period was not significantly different from time-matched placebo-treated lean rats. However, there was an 80% drop in CIN in rats treated with CSA at the start of the inactive period compared to control group. There were no differences in electrolyte handling. Insulin concentrations, independent of time of dosing, were markedly elevated in obese rats dosed CSA compared to placebo-treated obese or both lean groups. Serum triglyceride levels were significantly correlated with pharmacokinetic parameters of total but not parent CSA. In summary, significant differences in toxicity were observed due to time of dosing and lipid profiles. Although the mechanism of this action remains unclear, it appears that increased non-fasting serum triglyceride levels following the active period most likely reduced CSA distribution into kidney tissue preventing the dose-limiting nephrotoxicity.  相似文献   

5.
Uridine 5′-diphospho-glucuronosyltransferase-1A9 (UGT1A9) expressed in the liver, shows good sequence identity with UGT1A10, expressed in the intestine. Both uridine 5′-diphospho-glucuronosyltransferase (UGT) isoforms show comprehensive overlapping substrate selectivity but there are differences in stereoselectivity, regiospecificity and rate of glucuronidation of the substrates. Multiple sequence alignment analyses of UGT1A9 and UGT1A10 showed that 13% of the residues in N-terminal domain (NTD) are non-identical between them. Herein, authors attempted homology modelling of UGT1A9 and UGT1A10 and validation using software tools and reported mutagenic studies. A molecular docking study of the known substrates is performed on UGT1A9 and UGT1A10 homology models. The non-identical N-terminal residues ranging from 111 to 117 in UGT1A9 and UGT1A10 were identified to play a central role in the substrate selectivity. However, substrate binding is performed by Ser111, Gly115 and Leu117 in UGT1A10 and Gly111, Asp115 and Phe117 in UGT1A9. This study reports new residues in NTD, showing interaction with uridine 5′-diphospho-glucuronic acid which binds with C-terminal domain. Further, molecular dynamics simulations were carried out to study the role of non-identical residues in substrate identification. The study demonstrates the folding of the UGT enzyme, particularly, helix-loop-helix transition and movement of Nα3-2 helix, in response to substrate and co-substrate binding.  相似文献   

6.
CPT-11 is a drug used as chemotherapy for colorectal cancer. CPT-11 causes toxic side-effects in patients. CPT-11 toxicity has been attributed to the activity of intestinal microbiota, however, intestinal microbiota may also have protective effects in CP!-11 chemotherapy. This study aimed to elucidate mechanisms through which microbiota and dietary fibres could modify host health. Rats bearing a Ward colon carcinoma were treated with a two-cycle CPT-11/5-fluorouracil therapy recapitulating clinical therapy of colorectal cancer. Animals were fed with a semi-purified diet or a semi-purified diet was supplemented with non-digestible carbohydrates (isomalto-oligosaccharides, resistant starch, fructo-oligosaccharides, or inulin) in 3 independent experiments. Changes in intestinal microbiota, bacteria translocating to mesenteric lymphnodes, cecal GUD activity, and cecal SCFA production, and the intestinal concentration of CPT-11 and its metabolites were analysed. Non-digestible carbohydrates significantly influenced feed intake, body weight and other indicators of animal health. The identification of translocating bacteria and their quantification in cecal microbiota indicated that overgrowth of the intestine by opportunistic pathogens was not a major contributor to CPT-11 toxicity. Remarkably, fecal GUD activity positively correlated to body weight and feed intake but negatively correlated to cecal SN-38 concentrations and IL1-β. The reduction in CPT-11 toxicity by non-digestible carbohydrates did not correlate to stimulation of specific bacterial taxa. However, cecal butyrate concentrations and feed intake were highly correlated. The protective role of intestinal butyrate production was substantiated by a positive correlation of the host expression of MCT1 (monocarboxylate transporter 1) with body weight as well as a positive correlation of the abundance of bacterial butyryl-CoA gene with cecal butyrate concentrations. These correlations support the interpretation that the influence of dietary fibre on CPT-11 toxicity is partially mediated by an increased cecal production of butyrate.  相似文献   

7.
The research work was designed to compare the relative toxicity, chemotherapeutic activity, and pharmacokinetic parameters of liposomal incorporated SJA-95 with that of free SJA-95, with an objective to reduce toxicity and improve therapeutic activity in vivo. Liposomal-incorporated SJA-95 (Lip SJA-95), prepared using the proliposome method, was found to exhibit a higher LD50 value in mice, and the relative toxicity was about 2.5 times lower than that of the free drug. Lip SJA-95 treatment in experimental mice model of Candidiasis showed increased survival and reduced fungal loads in various organs. The pharmacokinetic profile of the free and liposomal drug was evaluated by administration of free and Lip SJA-95 intravenously to healthy albino rabbits in a crossover fashion. Lip SJA-95 showed an initial fall in plasma levels and longer half-life. The improved microbial clearance following treatment with Lip SJA-95 could be attributed partly to an increased tissue uptake, which was reflected in a marked increase in volume of distribution (Vd) and longer half-life (T1/2). The present results clearly indicated that Lip SJA-95 treatment led to prolonged survival time, effective microbiological clearance, and reduced toxicity in the mice model of Candidiasis.  相似文献   

8.
We have demonstrated the subcellular localization of the human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A6, in endoplasmic reticulum (ER) and nuclear membrane from human hepatocytes and cell lines, by in situ immunostaining and Western blot. Double immunostaining for UGT2B7 and calnexin, an ER resident protein, showed that UGT2B7 was equally present in ER and nuclear membrane whereas calnexin was present almost exclusively in ER. Immunogold labeling of HK293 cells expressing UGT2B7 established the presence of UGT2B7 in both nuclear membranes. Enzymatic assays with UGT2B7 substrates confirmed the presence of functional UGT2B7 protein in ER, whole nuclei, and both outer and inner nuclear membranes. This study has identified, for the first time, the presence of UGT2B7 and UGT1A6 in the nucleus and of UGT2B7 in the inner and outer nuclear membranes. This localization may play an important functional role within nuclei: protection from toxic compounds and/or control of steady-state concentrations of nuclear receptor ligands.  相似文献   

9.
A retrospective case control study of breast-fed full-term infants was carried out to determine whether variants in Uridine Diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) and Heme Oxygenase-1 (HMOX1) were associated with neonatal hyperbilirubinemia. Eight genetic variants of UGT1A1 and 3 genetic variants of HMOX1 were genotyped in 170 hyperbilirubinemic newborns and 779 controls. Five significant associations with breast-fed hyperbilirubinemia were detected after adjusting for gender, birth season, birth weight, delivery mode, gestational age and False Discovery Rate (FDR) correction: the dominant effect of rs887829 (c-364t) (Odds Ratio (OR): 0.55; 95% Confidence Interval (CI): 0.34–0.89; p = 0.014), the additive effect of (TA)n repeat (OR: 0.59; 95%CI: 0.38–0.91; p = 0.017), the dominant effect of rs4148323 (Gly71Arg, G211A) (OR: 2.02; 95%CI: 1.44–2.85; p = 5.0×10−5), the recessive effect of rs6717546 (g+914a) (OR: 0.30; 95%CI: 0.11–0.83; p = 0.021) and rs6719561 (t+2558c) (OR: 0.38; 95%CI: 0.20–0.75; p = 0.005). Neonates carrying the minor allele of rs887829 (TA)n repeat had significantly lower peak bilirubin than wild types, while the minor allele carriers of rs4148323 had significantly higher peak bilirubin than wild types. No association was found in HMOX1. Our findings added to the understanding of the significance of UGT1A1 in association with neonatal hyperbilirubinemia in East Asian population. Additional studies were required to investigate the mechanisms of the protective effects.  相似文献   

10.
In this report, we describe combined polymorphisms of the UGT1A9, UGT1A7 and UGT1A1 genes in 100 unrelated, healthy Chinese Han subjects. The functional regions of these genes were sequenced and comprehensively analyzed for genetic polymorphisms. Thirty variants were detected, including five novel forms. Tentative functional predictions indicated that a Cys → Arg substitution at position 277 in the UGT1A7 gene could alter the protein conformation and that 12460T > G in the 3'UTR might influence protein translation through specifically expressed miRNAs. UGT1A9*1b was a major functional variant in the subjects examined whereas the *1f allele had a frequency of only 0.5%. A special functional haplotype (GAGAAC) was identified for UGT1A9, 1A7 and 1A1. These findings provide fundamental genetic information that may serve as a basis for larger studies designed to assess the metabolic phenotypes associated with UGT1A polymorphisms. They also provide important data for the implementation of personalized medicine in Chinese Han.  相似文献   

11.
The study of polymorphism of the UGT1A1 gene has not been reported in the Chinese Tibetan population, and there are no comparisons of genetic polymorphism in the gene between Chinese Han and Tibetan populations. In this study, we directly sequenced the functional regions of the UGT1A1 gene in 200 unrelated healthy Chinese volunteers, detecting 20 variations (including five novel ones). The distributions of allele and genotype frequencies differ between the two groups. UGT1A1*6 is the major reduced functional variant in the populations, and the *27 allele was detected only in the Han group. Differences in the frequencies of the UGT1A1*6/*63 genotype between the Tibetan and Han populations were statistically significant (P?=?0.009). Our genetic data might provide fundamental information for the advance of personalized medicine and will facilitate genotype-phenotype studies in larger populations.  相似文献   

12.
Estrogens are critical for breast cancer initiation and development. Sulfotransferase 1A1 (SULT1A1) and UDP-glucuronosyltransferase 1A1 (UGT1A1) conjugate and inactivate both estrogens and their metabolites, thus preventing estrogen-mediated mitosis and mutagenesis. SULT1A1 and UGT1A1 are both polymorphic, and different alleles encode functionally different allozymes. We hypothesize that low-activity alleles SULT1A1*2 and UGT1A1*28 are associated with higher risk for breast cancer and more severe breast tumor phenotypes. We performed a case-control study, which included 119 women of Russian ancestry with breast cancer and 121 age-matched Russian female controls. We used PCR followed by pyrosequencing to determine the SULT1A1 and UGT1A1 genotypes. Allele UGT1A1*28 was present at a higher frequency than the wild-type UGT1A1*1 allele in breast cancer patients as compared to controls (P = 0.002, OR = 1.79, CI 1.23–2.63). Consistently, the frequency of genotypes that contain allele UGT1A1*28 in the homozygous or the heterozygous state was greater in breast cancer patients as compared with the frequency of the wild-type UGT1A1*1/*1 genotype (P = 0.003, OR = 4.00, CI 1.49–11.11 and P = 0.014, OR = 2.04, CI 1.14–3.57, respectively). Individuals carrying allele UGT1A1*28 in the homo-or heterozygous state had larger breast tumors (>2 cm) as compared to the group with high-activity genotypes (P = 0.011, IR = 3.44, CI 1.42–8.36). No association was observed between any of the SULT1A1 genotypes and breast cancer risk or phenotypes. Our data suggest that UGT1A1, but not SULT1A1, genotypes are important for breast cancer risk and phenotype in Russian women. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 263–270. The article was translated by the authors.  相似文献   

13.
14.
Glucuronidation is one of the most important phase II metabolic pathways. It is catalyzed by a family of UDP-glucuronosyltransferase enzymes (UGTs). One of the subfamilies is UGT1A. Allele frequencies in UGT1A4 differ among ethnic groups. The aim of this study was to determine the allelic frequency of two most common defective alleles: UGT1A4*2 and UGT1A4*3 in a Jordanian population. A total of 216 healthy Jordanian Volunteers (165 males and 51 females) were included in this study. Genotyping for UGT1A4*1, UGT1A4*2 and UGT1A4*3 was done using a well established polymerase chain reaction-restriction fragment length polymorphism test. Among 216 random individuals studied for UGT1A4*2 mutation there were 26 individuals who were heterozygous, giving a prevalence of 12% and an allele frequency of 6.5%. Only one individual was homozygous for UGT1A4*2. The UGT1A4*3 mutation was detected as heterozygous in 9 of 216 individuals indicating a prevalence of 4.2% and allele frequency of 3.5%. Three individuals were homozygous for the UGT1A4*3 indicating a prevalence of 1.4%. The prevalence of UGT1A4*2 is similar to the Caucasians but different from other populations whilst the UGT1A4*3 prevalence in the Jordanian population is distinct from other populations. Our results provide useful information for the Jordanian population and for future genotyping of Arab populations in general.  相似文献   

15.
Estrogens are critical for breast cancer initiation and development. Sulfotransferase 1A1 (SULT1A1) and UDP-glucuronosyltransferase 1A1 (UGT1A1) conjugate and inactivate both estrogens and their metabolites, thus preventing estrogen-mediated mitosis and mutagenesis. SULT1A1 and UGT1A1 genes are both polymorphic, and different alleles encode functionally different allozymes. We hypothesize that low activity alleles SULT1A1*2 and UGT1A1*28 are associated with the higher risk for breast cancer and more severe breast tumor phenotypes. We performed a case-control study, which included 119 women of Russian ancestry with breast cancer and 121 age-matched Russian female controls. We used PCR, followed by pyrosequencing to determine SULT1A1 and UGT1A1 genotypes. Our data showed that UGT1A1*28 allele was presented at a higher frequency than the wild type UGT1A1*1 allele in breast cancer patients as compared to controls (p = 0.002, OR = 1.79, CI 1.23-2.63). Consistently, the frequency of genotypes that contain the UGT1A1*28 allele in the homozygous or heterozygous state was greater than the frequency of the wild type UGT1A1*1/*1 genotype in breast cancer patients as compared to controls (p = 0.003, OR = 4.00, CI 1.49-11.11 and p = 0.014, OR = 2.04, CI 1.14-3.57, respectively). The group of individuals, carrying the UGT1A1*28 allele in the homo- or heterozygous state also presented larger breast tumors (>2 cm) as compared to the group with high enzymatic activity genotypes p = 0.011, OR = 3.44, CI 1.42-8.36). No association was observed between any of the SULT1A1 genotypes and breast cancer risk or phenotypes. Our data suggest that UGT1A1 but not SULT1A1 genotype might be important for breast cancer risk and phenotype in Russian women.  相似文献   

16.
17.
Genetic lesions of bilirubin-uridine-diphosphoglucuronate glucuronosyltransferase-1 (UGT1A1) completely or partially abolish hepatic bilirubin glucuronidation, causing Crigler-Najjar syndrome type 1 or 2, respectively. Clinical observations indicate that some mutant forms of human UGT1A1 (hUGT1A1) may be dominant-negative, suggesting their interaction with the wild-type enzyme. To evaluate intermolecular interaction of hUGT1A1, Gunn rat fibroblasts were stably transduced with hUGT1A1 cDNA. Gel permeation chromatography of solubilized microsomes suggested dimerization of hUGT1A1 in solution. Nearest-neighbor cross-linking analysis indicated that, within microsomal membranes, hUGT1A1 dimerized more efficiently at pH 7.4 than at pH 9. Two-hybrid analysis in yeast and mammalian systems demonstrated positive interaction of hUGT1A1 with itself, but not with another UGT isoform, human UGT1A6, which differs only in the N-terminal domain. Dimerization was abolished by deletion of the membrane-embedded helix from the N-terminal domain of hUGT1A1, but not by substitution of several individual amino acid residues or partial deletion of the C-terminal domain. A C127Y substitution abolished UGT1A1 activity, but not its dimerization. Coexpression of mutagenized and wild-type hUGT1A1 in COS-7 cells showed that the mutant form markedly suppressed the catalytic activity of wild-type hUGT1A1. Homodimerization of hUGT1A1 may explain the dominant-negative effect of some mutant forms of the enzyme.  相似文献   

18.
Background: Catechol-estrogen metabolites can induce carcinogenesis by acting as endogenous tumor initiators. Glucuronidation, mediated by the UDP-glucuronosyltransferase 1A1 (UGT1A1) enzyme, is a main metabolic pathway of estrogen detoxification in steroid target tissues, such as the prostate. The aim of our study was to investigate the possible correlation between UGT1A1 promoter gene polymorphisms and prostate cancer risk. Patients and methods: 129 patients with prostate cancer and 260 healthy controls were included in our study. A(TA)TAA promoter polymorphism of UGT1A1 gene was studied using the Fragment Analysis Software of an automated DNA sequencer and three genotypes (homozygous 7/7, heterozygous 6/7 and normal homozygous 6/6) were identified. Results: No significant differences were observed between the cancer group and controls regarding the genotyping distribution of the three UGT1A1 promoter genotypes (P > 0.05). Also, no association was found between overall disease risk and the presence of the polymorphic homozygous genotype (TA(7)/TA(7) vs TA(6)/TA(7) + TA(6)/TA(6)) (P = 0.18). In addition, no association was revealed between UGT1A1 genotype distribution and Gleason score (P = 0.55). Conclusion: Our data suggest that the TA repeat polymorphism of UGT1A1 gene does not seem to alter prostate cancer risk susceptibility in Caucasian men.  相似文献   

19.
Crigler–Najjar Syndrome type II (CNS-II) is an autosomal recessive hereditary condition of unconjugated hyperbilirubinemia without hemolysis, with bilirubin levels ranging from 102.6 μmol/L to 342 μmol/L. CNS-II is caused by a deficiency of UDP-glucuronyl transferase (UGT), which is encoded by the UDP-glucuronyl transferase 1A1 gene (UGT1A1). In East Asian populations, the compound homozygous UGT1A1 G71R and Y486D variants are frequently observed in cases with bilirubin levels exceeding 200 μmol/L. In this study, we investigated the spectrum of UGT1A1 variations in Chinese CNS-II patients. We sequenced the enhancer, promoter, and coding regions of UGT1A1 in 11 unrelated Chinese CNS-II patients and 80 healthy controls. Nine of these patients carried variations that are here reported for the first time in CNS-II patients, although they have been previously reported for other types of hereditary unconjugated hyperbilirubinemia. These individual variations have less influence on UGT activity than do the compound homozygous variation (combination of homozygous G71R variant and Y486D variant). Therefore, we propose that the spectrum of UGT1A1 variations in CNS-II differs according to the bilirubin levels.  相似文献   

20.
Fujita K  Mogami A  Hayashi A  Kamataki T 《Life sciences》2000,66(20):1955-1967
Human uridinediphosphate-glucuronosyltransferase 1A1 (UGT1A1) was expressed in Salmonella typhimurium TA1535 cells by transfection of the cells with plasmids carrying the UGT1A1 cDNA. UGT1A1 cDNA was isolated by a polymerase chain reaction from human liver total RNA and was inserted into the pSE420 plasmid, linked to the trc promoter and terminator. The plasmid thus constructed was introduced into Salmonella TA1535 cells. The expression of human UGT1A1 protein was confirmed by Western blot analysis. The maximal expression was observed at 24 h after the addition of isopropyl-beta-D-thiogalactopyranoside, an inducer. However, the bilirubin conjugation activity of the membrane fraction from the Salmonella cells was not detectable. When a beta-glucuronidase inhibitor such as saccharic acid 1,4-lactone, glycyrrhizin or 1-naphtyl-beta-D-glucuronide was added to the reaction mixture, the bilirubin conjugation activity of the human UGT1A1 was detected. When geniposide was added to the reaction mixture, the bilirubin conjugation activity of UGT1A1 was not seen. Taking these results into account, the established Salmonella strain possesses the beta-glucuronidase activity. Since the beta-glucuronidase activity of the Salmonella was lower than that of E. coli, it was concluded that Salmonella seemed to be a good host to express UGT protein. This is the first study to demonstrate the establishment of a bacterial strain expressing native human UGT protein showing catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号