首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nosema spp. fungal gut parasites are among myriad possible explanations for contemporary increased mortality of western honey bees (Apis mellifera, hereafter honey bee) in many regions of the world. Invasive Nosema ceranae is particularly worrisome because some evidence suggests it has greater virulence than its congener N. apis. N. ceranae appears to have recently switched hosts from Asian honey bees (Apis cerana) and now has a nearly global distribution in honey bees, apparently displacing N. apis. We examined parasite reproduction and effects of N. apis, N. ceranae, and mixed Nosema infections on honey bee hosts in laboratory experiments. Both infection intensity and honey bee mortality were significantly greater for N. ceranae than for N. apis or mixed infections; mixed infection resulted in mortality similar to N. apis parasitism and reduced spore intensity, possibly due to inter-specific competition. This is the first long-term laboratory study to demonstrate lethal consequences of N. apis and N. ceranae and mixed Nosema parasitism in honey bees, and suggests that differences in reproduction and intra-host competition may explain apparent heterogeneous exclusion of the historic parasite by the invasive species.  相似文献   

2.
Nosema ceranae is a microsporidian parasite described from the Asian honey bee, Apis cerana. The parasite is cross-infective with the European honey bee, Apis mellifera. It is not known when or where N. ceranae first infected European bees, but N. ceranae has probably been infecting European bees for at least two decades. N. ceranae appears to be replacing Nosema apis, at least in some populations of European honey bees. This replacement is an enigma because the spores of the new parasite are less durable than those of N. apis. Virulence data at both the individual bee and at the colony level are conflicting possibly because the impact of this parasite differs in different environments. The recent advancements in N. ceranae genetics, with a draft assembly of the N. ceranae genome available, are discussed and the need for increased research on the impacts of this parasite on European honey bees is emphasized.  相似文献   

3.
Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).  相似文献   

4.
5.
Multiple stressors are currently threatening honey bee health, including pests and pathogens. Among honey bee pathogens, Nosema ceranae is a microsporidian found parasitizing the western honey bee (Apis mellifera) relatively recently. Honey bee colonies are fed pollen or protein substitute during pollen dearth to boost colony growth and immunity against pests and pathogens. Here we hypothesize that N. ceranae intensity and prevalence will be low in bees receiving high pollen diets, and that honey bees on high pollen diets will have higher survival and/or increased longevity. To test this hypothesis we examined the effects of different quantities of pollen on (a) the intensity and prevalence of N. ceranae and (b) longevity and nutritional physiology of bees inoculated with N. ceranae. Significantly higher spore intensities were observed in treatments that received higher pollen quantities (1:0 and 1:1 pollen:cellulose) when compared to treatments that received relatively lower pollen quantities. There were no significant differences in N. ceranae prevalence among different pollen diet treatments. Interestingly, the bees in higher pollen quantity treatments also had significantly higher survival despite higher intensities of N. ceranae. Significantly higher hypopharyngeal gland protein was observed in the control (no Nosema infection, and receiving a diet of 1:0 pollen:cellulose), followed by 1:0 pollen:cellulose treatment that was inoculated with N. ceranae. Here we demonstrate that diet with higher pollen quantity increases N. ceranae intensity, but also enhances the survival or longevity of honey bees. The information from this study could potentially help beekeepers formulate appropriate protein feeding regimens for their colonies to mitigate N. ceranae problems.  相似文献   

6.
Globalization has provided opportunities for parasites/pathogens to cross geographic boundaries and expand to new hosts. Recent studies showed that Nosema ceranae, originally considered a microsporidian parasite of Eastern honey bees, Apis cerana, is a disease agent of nosemosis in European honey bees, Apis mellifera, along with the resident species, Nosema apis. Further studies indicated that disease caused by N. ceranae in European honey bees is far more prevalent than that caused by N. apis. In order to gain more insight into the epidemiology of Nosema parasitism in honey bees, we conducted studies to investigate infection of Nosema in its original host, Eastern honey bees, using conventional PCR and duplex real time quantitative PCR methods. Our results showed that A. cerana was infected not only with N. ceranae as previously reported [Fries, I., Feng, F., Silva, A.D., Slemenda, S.B., Pieniazek, N.J., 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356-365], but also with N. apis. Both microsporidia produced single and mixed infections. Overall and at each location alone, the prevalence of N. ceranae was higher than that of N. apis. In all cases of mixed infections, the number of N. ceranae gene copies (corresponding to the parasite load) significantly out numbered those of N. apis. Phylogenetic analysis based on a variable region of small subunit ribosomal RNA (SSUrRNA) showed four distinct clades of N. apis and five clades of N. ceranae and that geographical distance does not appear to influence the genetic diversity of Nosema populations. The results from this study demonstrated that duplex real-time qPCR assay developed in this study is a valuable tool for quantitative measurement of Nosema and can be used to monitor the progression of microsprodian infections of honey bees in a timely and cost efficient manner.  相似文献   

7.
In northern temperate climates, western honey bee (Apis mellifera) colonies can be wintered outdoors exposed to ambient conditions, or indoors in a controlled setting. Because very little is known about how this affects the recently-detected microsporidium Nosema ceranae, we investigated effects of indoor versus outdoor overwintering on spring N. ceranae intensity (spores per bee), and on winter and spring colony mortality. For colonies medicated with Fumagilin-B® to control N. ceranae, overwintering treatment did not affect N. ceranae intensity, despite outdoor-wintered colonies having significantly greater mortality. These findings suggest that N. ceranae may not always pose the most significant threat to western honey bees, and that indoor-wintering may ensure that a greater number of colonies are available for honey production and pollination services during the summer.  相似文献   

8.
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21?days post inoculation (21?days?pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host’s whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6?days?pi. At 7?days?pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14?days?pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14?days?pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.  相似文献   

9.
Many flowering plants in both natural ecosytems and agriculture are dependent on insect pollination for fruit set and seed production. Managed honey bees (Apis mellifera) and wild bees are key pollinators providing this indispensable eco- and agrosystem service. Like all other organisms, bees are attacked by numerous pathogens and parasites. Nosema apis is a honey bee pathogenic microsporidium which is widely distributed in honey bee populations without causing much harm. Its congener Nosema ceranae was originally described as pathogen of the Eastern honey bee (Apis cerana) but jumped host from A. cerana to A. mellifera about 20 years ago and spilled over from A. mellifera to Bombus spp. quite recently. N. ceranae is now considered a deadly emerging parasite of both Western honey bees and bumblebees. Hence, novel and sustainable treatment strategies against N. ceranae are urgently needed to protect honey and wild bees. We here present the development of an in vitro medium throughput screening assay for the identification of candidate agents active against N. ceranae infections. This novel assay is based on our recently developed cell culture model for N. ceranae and coupled with an RT-PCR-ELISA protocol for quantification of N. ceranae in infected cells. The assay has been adapted to the 96-well microplate format to allow automated analysis. Several substances with known (fumagillin) or presumed (surfactin) or no (paromomycin) activity against N. ceranae were tested as well as substances for which no data concerning N. ceranae inhibition existed. While fumagillin and two nitroimidazoles (metronidazole, tinidazole) totally inhibited N. ceranae proliferation, all other test substances were inactive. In summary, the assay proved suitable for substance screening and demonstrated the activity of two synthetic antibiotics against N. ceranae.  相似文献   

10.
Nosema ceranae causes a widespread disease that reduces honey bee health but is only thought to infect adult honey bees, not larvae, a critical life stage. We reared honey bee (Apis mellifera) larvae in vitro and provide the first demonstration that N. ceranae can infect larvae and decrease subsequent adult longevity. We exposed three-day-old larvae to a single dose of 40,000 (40K), 10,000 (10K), zero (control), or 40K autoclaved (control) N. ceranae spores in larval food. Spores developed intracellularly in midgut cells at the pre-pupal stage (8 days after egg hatching) of 41% of bees exposed as larvae. We counted the number of N. ceranae spores in dissected bee midguts of pre-pupae and, in a separate group, upon adult death. Pre-pupae exposed to the 10K or 40K spore treatments as larvae had significantly elevated spore counts as compared to controls. Adults exposed as larvae had significantly elevated spore counts as compared to controls. Larval spore exposure decreased longevity: a 40K treatment decreased the age by which 75% of adult bees died by 28%. Unexpectedly, the low dose (10K) led to significantly greater infection (1.3 fold more spores and 1.5 fold more infected bees) than the high dose (40K) upon adult death. Differential immune activation may be involved if the higher dose triggered a stronger larval immune response that resulted in fewer adult spores but imposed a cost, reducing lifespan. The impact of N. ceranae on honey bee larval development and the larvae of naturally infected colonies therefore deserve further study.  相似文献   

11.
Nosema ceranae is now considered to be an emerging infectious disease of the European honey bee Apis mellifera. Only one antibiotic, Fumagillin, is commercially available to combat Nosema infections. This antibiotic treatment is banned from use in Europe and elsewhere there is a high probability for antibiotic resistance to develop. We are therefore interested in investigating the effects of a natural propolis extract on its ability to reduce N. ceranae infection loads in the dwarf honey bee, Apis florea, a native honey bee with a range that overlaps with Apis cerana and Apis mellifera that is at risk of infection. Experimentally infected caged bees were fed a treatment consisting of 0%, 50%, or 70% propolis extract. All 50% and 70% propolis treated bees had significantly lower infection loads, and the 50% treated bees had higher survival in comparison to untreated bees. In addition, propolis treated bees had significantly higher haemolymph trehalose levels and hypopharyngeal gland protein content similar to levels of uninfected bees. Propolis ethanolic extract treatment could therefore be considered as a possible viable alternative to Fumagillin to improve bee health. This natural treatment deserves further exploration to develop it as a possible alternative to combat N. ceranae infections distributed around the world.  相似文献   

12.
A total of 7386 samples of adult honey bees from different areas of Serbia (fifteen regions and 79 municipalities) were selected for light microscopy analysis for Nosema species during 1992–2017. A selection of honey bee samples from colonies positive for microsporidian spores during 2009–2011, 2015 and 2017 were then subjected to molecular diagnosis by multiplex PCR using specific primers for a region of the 16S rRNA gene of Nosema species. The prevalence of microsporidian spore-positive bee colonies ranged between 14.4% in 2013 and 65.4% in 1992. PCR results show that Nosema ceranae is not the only Nosema species to infect honey bees in Serbia. Mixed N. apis/N. ceranae infections were detected in the two honey bee samples examined by mPCR during 2017. The beekeeping management of disease prevention, such as replacement of combs and queens and hygienic handling of colonies are useful in the prevention of Nosema infection.  相似文献   

13.
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.  相似文献   

14.
Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.  相似文献   

15.
The infection of honey bees, Apis mellifera L. (Hymenoptera: Apidae), by the microsporidian Nosema ceranae is one of the factors related to the increase in colony losses and the decrease in honey production observed in recent years. However, these effects seem to differ depending on the climate zone. The range and prevalence of N. ceranae have increased significantly in the last decades, with different consequences in northern and southern temperate areas. The existence of various isolates of N. ceranae from distant geographical areas, which probably exhibit different degrees of virulence, could explain the different responses of the bee to the infection. The aim of this work was to compare the effects of two N. ceranae isolates from different host populations from Argentina on honey bee survival at two ages post-eclosion. Using cage experiments, we compared the development of infection of worker bees through the estimation of daily bee mortality and spore counts. Host subspecies identity analysis showed a strong similarity with Apis mellifera scutellata morphotype for the northern region, with a greater hybridization between subspecies with European origin toward the central and southern regions. Genetic characterization of isolates from the three regions indicated only the presence of N. ceranae. Infected bees survived longer than control bees, and bees infected at 5 days had a lower survival than those infected at 72 h with isolates from the three regions. These differences in survival matched the development of the N. ceranae infection, with differences in spore loads for infected bees at 5 days. Our studies showed that Nosema infection and survival varied among the different ages post emergence of workers, and both increased as the honey bee aged. These differences in susceptibility to infection could be related to the immune response of bees of different ages or to changes in the composition and succession of the intestinal microbiota throughout its ontogeny.  相似文献   

16.
Adult workers of Apis cerana, Apis florea and Apis mellifera from colonies heavily infected with Nosema ceranae were selected for molecular analyses of the parasite. PCR-specific 16S rRNA primers were designed, cloned, sequenced and compared to GenBank entries. The sequenced products corresponded to N. ceranae. We then infected A. cerana with N. ceranae spores isolated from A. florea workers. Newly emerged bees from healthy colonies were fed 10,000, 20,000 and 40,000 spores/bee. There were significant dosage dependent differences in bee infection and survival rates. The ratio of infected cells to non-infected cells increased at 6, 10 and 14 d post infection. In addition, hypopharyngeal glands of bees from the control group had significantly higher protein concentrations than infected groups. Bees infected with 40,000 spores/bee had the lowest protein concentrations. Thus, N. ceranae isolated from A. florea is capable of infecting another bee species, impairing hypopharyngeal gland protein production and reducing bee survival in A. cerana.  相似文献   

17.
Until the mid-1990s, the only microsporidium known to infect bees of the genus Apis was Nosema apis. A second species, Nosema ceranae, was first identified in 1996 from Asian honey bees; it is postulated that this parasite was transmitted from the Asian honey bee, Apis cerana, to the European honey bee, Apis mellifera. Currently, N. ceranae is found on all continents and has often been associated with honey bee colony collapse and other reports of high bee losses. Samples of Africanized drones collected in 1979, preserved in alcohol, were analyzed by light microscopy to count spores and were subjected to DNA extraction, after which duplex PCR was conducted. All molecular analyses (triplicate) indicated that the drones were infected with both N. ceranae and N. apis. PCR products were sequenced and matched to sequences reported in the GenBank (Acc. Nos. JQ639316.1 and JQ639301.1). The venation pattern of the wings of these males was compared to those of the current population living in the same area and with the pattern of drones collected in 1968 from Ribeirão Preto, SP, Brazil, from a location close to where African swarms first escaped in 1956. The morphometric results indicated that the population collected in 1979 was significantly different from the current living population, confirming its antiquity. Considering that the use of molecular tools for identifying Nosema species is relatively recent, it is possible that previous reports of infections (which used only light microscopy, without ultrastructural analysis) wrongly identified N. ceranae as N. apis. Although we can conclude that N. ceranae has been affecting Africanized honeybees in Brazil for at least 34 years, the impact of this pathogen remains unclear.  相似文献   

18.
In agriculture, honey bees play a critical role as commercial pollinators of crop monocultures which depend on insect pollination. Hence, the demise of honey bee colonies in Europe, USA, and Asia caused much concern and initiated many studies and research programmes aiming at elucidating the factors negatively affecting honey bee health and survival. Most of these studies look at individual factors related to colony losses. In contrast, we here present our data on the interaction of pathogens and parasites in honey bee colonies. We performed a longitudinal cohort study over 6 years by closely monitoring 220 honey bee colonies kept in 22 apiaries (ten randomly selected colonies per apiary). Observed winter colony losses varied between 4.8% and 22.4%; lost colonies were replaced to ensure a constant number of monitored colonies over the study period. Data on mite infestation levels, infection with viruses, Nosema apis and Nosema ceranae, and recorded outbreaks of chalkbrood were continuously collected. We now provide statistical evidence (i) that Varroa destructor infestation in summer is related to DWV infections in autumn, (ii) that V. destructor infestation in autumn is related to N. apis infection in the following spring, and most importantly (iii) that chalkbrood outbreaks in summer are related to N. ceranae infection in the preceding spring and to V. destructor infestation in the same season. These highly significant links between emerging parasites/pathogens and established pathogens need further experimental proof but they already illustrate the complexity of the host–pathogen-interactions in honey bee colonies.  相似文献   

19.
Western honey bee (Apis mellifera) colonies in Nova Scotia, Canada were sampled in spring and late summer 2007 to evaluate efficacy of fumagillin dicyclohexylammonium (hereafter, fumagillin) against Nosema ceranae. Colonies treated with fumagillin in September 2006 (n = 94) had significantly lower Nosema intensity in spring 2007 than did colonies that received no treatment (n = 51), but by late summer 2007 no difference existed between groups. Molecular sequencing of 15 infected colonies identified N. ceranae in 93.3% of cases, suggesting that fumagillin is successful at temporarily reducing this recent invasive parasite in western honey bees.  相似文献   

20.
Nosema ceranae is the most prevalent endoparasite of Apis mellifera iberiensis and it is a major health problem for bees worldwide. The infective capacity of N. ceranae has been demonstrated experimentally in honey bee brood, however no data are available about its prevalence in brood under natural conditions. Thus, brood combs from 10 different hives were analyzed over two consecutive years, taking samples before and after winter. A total of 1433 larvae/pupae were analyzed individually and N. ceranae (3.53%) was the microsporidian most frequently detected, as opposed to Nosema apis (0.42%) which was more frequently detected in conjunction with N. ceranae (0.71%). The active multiplication of both microsporidians was confirmed by the expression (real-time-PCR) of the N. ceranae polar tube protein 3 gene and/or the N. apis RNA polymerase II gene in 24% of the brood samples positive for Nosema spp. Both genes are related to microsporidian multiplication. As such, N. ceranae multiplication was confirmed in 1.06% of the samples, while N. apis multiplication was only observed in co-infections with N. ceranae (0.07%). Brood cells were analyzed for the presence of Nosema spp., as those are the immediate environment where the brood stages develop. The brood samples infected by Nosema spp. were in brood cells in which that microsporidians were not detected, while brood cells positive for N. ceranae hosted brood stages that were not apparently infected, indicating that this is unlikely to be the main pathway of infection. Finally, the colonies with brood infected by N. ceranae showed higher levels (numbers) of infected adult bees, although the differences were not significant before (P = 0.260), during (P = 0.055) or after (P = 0.056) brood sampling. These results show that N. ceranae is a bee parasite ubiquitous to all members of the colony, irrespective of the age of the bee. It is also of veterinary interest and should be considered when studying the epidemiology of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号