首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.  相似文献   

2.
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.  相似文献   

3.
Tumor microenvironment (TME) could impose a great challenge for cancer targeted therapies. Immunosuppression within the TME creates a barrier between cancer cells and therapeutic approaches. A number of cells are hosted within this milieu, among them cancer-associated fibroblasts (CAFs) are the most abundant cell populations playing major roles in mediating an immunosuppressive TME. CAFs have cross-talks with almost all cells within the TME for reprogramming them into being tumorigenic. This reprogramming reduces the pre-existing tumor immunity and dampens the efficacy of chemotherapeutic approaches. CAFs would do this through releasing a myriad of factors to the TME making it an appropriate nest for tumor growth. The cells degrade and deposit extracellular matrix components, both of which are tumorigenic. Therefore, disruption of cross-talks between CAFs with other cells within the TME would be a promising approach in cancer targeted therapies. This approach is applicable through dampening dominant signals mediated by CAFs. Another interesting approach would be reprogramming of CAFs toward their normal counterpart. This would need identification of different subtypes for these cells and their functions. More knowledge is also required about selective markers for each CAF subtype.  相似文献   

4.
J Mao  S Fan  W Ma  P Fan  B Wang  J Zhang  H Wang  B Tang  Q Zhang  X Yu  L Wang  B Song  L Li 《Cell death & disease》2014,5(1):e1039
The Wnt1 protein, a secreted ligand that activates Wnt signaling pathways, contributes to the self-renewal of cancer stem cells (CSCs) and thus may be a major determinant of tumor progression and chemoresistance. In a series of gastric cancer specimens, we found strong correlations among Wnt1 expression, CD44 expression, and the grade of gastric cancer. Stable overexpression of Wnt1 increased AGS gastric cancer cells'' proliferation rate and spheroids formation, which expressed CSC surface markers Oct4 and CD44. Subcutaneous injection of nude mice with Wnt1-overexpressing AGS cells resulted in larger tumors than injection of control AGS cells. Salinomycin, an antitumor agent, significantly reduced the volume of tumor caused by Wnt1-overexpressing AGS cells in vivo. This is achieved by inhibiting the proliferation of CD44+Oct4+ CSC subpopulation, at least partly through the suppression of Wnt1 and β-catenin expression. Taken together, activation of Wnt1 signaling accelerates the proliferation of gastric CSCs, whereas salinomycin acts to inhibit gastric tumor growth by suppressing Wnt signaling in CSCs. These results suggest that Wnt signaling might have a critical role in the self-renewal of gastric CSCs, and salinomycin targeting Wnt signaling may have important clinical applications in gastric cancer therapy.  相似文献   

5.
6.
Transforming growth factor (TGF)-β is a multitasking cytokine such that its aberrant expression is related to cancer progression and metastasis. TGF-β is produced by a variety of cells within the tumor microenvironment (TME), and it is responsible for regulation of the activity of cells within this milieu. TGF-β is a main inducer of epithelial–mesenchymal transition (EMT), immune evasion, and metastasis during cancer progression. TGF-β exerts most of its functions by acting on TβRI and TβRII receptors in canonical (Smad-dependent) or noncanonical (Smad-independent) pathways. Members of mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and nuclear factor κβ are involved in the non-Smad TGF-β pathway. TGF-β acts by complex signaling, and deletion in one of the effectors in this pathway may influence the outcome in a diverse way by taking even an antitumor role. The stage and the type of tumor (contextual cues from cancer cells and/or the TME) and the concentration of TGF-β are other important factors determining the fate of cancer (progression or repression). There are a number of ways for targeting TGF-β signaling in cancer, among them the special focus is on TβRII suppression.  相似文献   

7.
Colorectal cancer (CRC) is one of the most common cancers worldwide, which ranks third in terms of incidence and the second leading cause of cancer-related mortality. Metabolic reprogramming within the tumor microenvironment (TME) has been proved intimately involved in the initiation and malignant progression of CRC. Signal messengers, including cytokines, metabolites, and exosomes among others, derived from cancer cells can be utilized by the surrounding cells within the TME to induce metabolic alteration and cancer-associated transformation. In turn, the cargos secreted from cancer-associate cells further provide the nutrition and energy supply for cancer cells, supporting their metabolic reprogramming to promote proliferation, migration, metastasis, and radiochemoresistance.In this review, we focus on the main cellular components in the TME: CAFs, TAMs, lymphocytes and neutrophils, and enumerate and integrate how the metabolic interactions between these components and cancer cells reshape TME to foster CRC malignancy.  相似文献   

8.
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.  相似文献   

9.
BackgroundLung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions.Purpose of studyTo establish lncRNAs of TME as novel targets of natural compounds for lung cancer management.Study designCurrent study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME.ResultsThis review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer.ConclusionBy critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.  相似文献   

10.
Aberrant activation of the Wnt signaling pathway is a common cause of colon cancer and other tumor types, accomplishing many of the hallmarks of cancer including sustained proliferative signaling, replicative immortality, reprogrammed metabolism, angiogenesis, and invasion. Yet, the dominant mutation that leads to chronic Wnt signaling in colon cancer is quite different from the spectrum of mutations that activate Wnt signaling in other tumor types. In this issue of The EMBO Journal, Huels et al ( 2015 ) focus on the influential role E‐cadherin plays in shaping these differences.  相似文献   

11.
Stem cells are defined by their intrinsic capacity to self-renew and differentiate. Cancer stem cells retain both these features but have lost homeostatic mechanisms which maintain normal cell numbers. The canonical Wnt/beta-catenin signaling pathway plays a central role in modulating the delicate balance between stemness and differentiation in several adult stem cell niches such as the hair follicles in the skin, the mammary gland, and the intestinal crypt. Accordingly, constitutive Wnt signaling activation, resulting from mutations in genes encoding its downstream components, underlies tumorigenesis in these tissues. In the majority of sporadic colorectal cancer cases, the rate-limiting event is either loss of APC function or oncogenic beta-catenin mutations. However, although the presence of these initiating mutations would predict nuclear beta-catenin accumulation throughout the tumor mass, heterogeneous intracellular distributions of this key Wnt signaling molecule are observed within primary tumors and their metastases. In particular, tumor cells located at the invasive front and those migrating into the adjacent stromal tissues show nuclear beta-catenin staining. Hence, different levels of Wnt signaling activity reflect tumor heterogeneity and are likely to account for distinct cellular activities such as proliferation and epithelial-mesenchymal transitions, which prompt tumor growth and malignant behavior, respectively. Several intrinsic (cell-autonomous and/or autocrine) and extrinsic (paracrine, derived from the tumor microenvironment) factors may explain this heterogeneity of Wnt/beta-catenin signaling activity within the tumor mass.  相似文献   

12.
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.  相似文献   

13.
14.
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.  相似文献   

15.
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.  相似文献   

16.
17.
Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.  相似文献   

18.
Mathematical modeling and computational analysis are essential for understanding the dynamics of the complex gene networks that control normal development and homeostasis, and can help to understand how circumvention of that control leads to abnormal outcomes such as cancer. Our objectives here are to discuss the different mechanisms by which the local biochemical and mechanical microenvironment, which is comprised of various signaling molecules, cell types and the extracellular matrix (ECM), affects the progression of potentially-cancerous cells, and to present new results on two aspects of these effects. We first deal with the major processes involved in the progression from a normal cell to a cancerous cell at a level accessible to a general scientific readership, and we then outline a number of mathematical and computational issues that arise in cancer modeling. In Section 2 we present results from a model that deals with the effects of the mechanical properties of the environment on tumor growth, and in Section 3 we report results from a model of the signaling pathways and the tumor microenvironment (TME), and how their interactions affect the development of breast cancer. The results emphasize anew the complexities of the interactions within the TME and their effect on tumor growth, and show that tumor progression is not solely determined by the presence of a clone of mutated immortal cells, but rather that it can be ‘community-controlled’.  相似文献   

19.
20.
Lu W  Lin C  Roberts MJ  Waud WR  Piazza GA  Li Y 《PloS one》2011,6(12):e29290
The Wnt/β-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/β-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced β-catenin accumulation, and inhibit Wnt/β-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/β-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC(50) values less than 1 μM for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC(50) values are comparable to those shown to suppress the activities of Wnt/β-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/β-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号