首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Endocrine practice》2013,19(3):497-510
ObjectiveTo review the role of human large bowel microbacteria (microbiota) in the glucose homeostasis, to address vitamin D (VD) and prebiotics interactions with microbiota, and to summarize recent randomized clinical trials (RCTs) of VD and prebiotics supplementation in prediabetes (PreDM) and type 2 diabetes mellitus (T2DM).MethodsPrimary literature was reviewed in the following areas: composition and activity of human microbiota associated with PreDM and T2DM, interactions between microbiota and glucose homeostasis, the interaction of microbiota with VD/prebiotics, and RCTs of VD/prebiotics in subjects with PreDM or T2DM.ResultsThe human microbiota is comprised of 100 trillion bacteria with an aggregate genome that is 150-fold larger than the human genome. Data from the animal models and human studies reveal that an “obesogenic” diet results into the initial event of microbiota transformation from symbiosis to dysbiosis. The microbial antigens, such as Gram(-) bacteria and lipopolysaccharide (LPS), translocate to the host interior and trigger increased energy harvesting and Toll-like receptor (TLR) activation with subsequent inflammatory pathways signaling. The “double hit” of steatosis (ectopic fat accumulation) and “—itis” (inflammation) and contribution of “corisks” (e.g., vitamin D deficiency [VDD]) are required to activate molecular signaling, including impaired insulin signaling and secretion, that ends with T2DM and associated diseases. Dietary changes (e.g., prebiotics, VD supplementation) may ameliorate this process if initiated prior to the process becoming irreversible.ConclusionEmerging evidence suggests an important role of microbiota in glucose homeostasis. VD supplementation and prebiotics may be useful in managing PreDM and T2DM. (Endocr Pract. 2013;19:497-510)  相似文献   

2.
Over-nutrition has fuelled the global epidemic of type 2 diabetes, but the role of individual macronutrients to the diabetogenic process is not well delineated. We aimed to examine the impact of dietary fatty acid intake on fasting and 2-hour plasma glucose concentrations, as well as tissue-specific insulin action governing each. Normoglycemic controls (n = 15), athletes (n = 14), and obese (n = 23), as well as people with prediabetes (n = 10) and type 2 diabetes (n = 11), were queried about their habitual diet using a Food Frequency Questionnaire. All subjects were screened by an oral glucose tolerance test (OGTT) and studied using the hyperinsulinemic/euglycemic clamp with infusion of 6,62H2-glucose. Multiple regression was performed to examine relationships between dietary fat intake and 1) fasting plasma glucose, 2) % suppression of endogenous glucose production, 3) 2-hour post-OGTT plasma glucose, and 4) skeletal muscle insulin sensitivity (glucose rate of disappearance (Rd) and non-oxidative glucose disposal (NOGD)). The %kcal from saturated fat (SFA) was positively associated with fasting (β = 0.303, P = 0.018) and 2-hour plasma glucose (β = 0.415, P<0.001), and negatively related to % suppression of hepatic glucose production (β = -0.245, P = 0.049), clamp Rd (β = -0.256, P = 0.001) and NOGD (β = -0.257, P = 0.001). The %kcal from trans fat was also negatively related to clamp Rd (β = -0.209, P = 0.008) and NOGD (β = -0.210, P = 0.008). In contrast, the %kcal from polyunsaturated fat (PUFA) was negatively associated with 2-hour glucose levels (β = -0.383, P = 0.001), and positively related to Rd (β = 0.253, P = 0.007) and NOGD (β = 0.246, P = 0.008). Dietary advice to prevent diabetes should consider the underlying pathophysiology of the prediabetic state.  相似文献   

3.
《Endocrine practice》2012,18(6):826-833
ObjectiveTo evaluate the effect of salsalate as an antiinflammatory agent on insulin resistance and glycemic control in persons with prediabetes.MethodsIn this double-blind, placebo-controlled clinical trial, 66 persons who had prediabetes on the basis of the American Diabetes Association criteria were enrolled. They were randomly assigned to receive salsalate (3 g daily) or placebo for 12 weeks. Fasting plasma glucose (FPG) and insulin, glucose 2 hours after oral administration of 75 g of glucose, hemoglobin A1c, lipid profile, homeo stasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment of beta-cell function were determined before and after treatment.ResultsSalsalate treatment reduced the FPG level from 5.86 ± 0.07 mmol/L to 5.20 ± 0.11 mmol/L and HOMA-IR from 4.2 ± 0.9 to 3.8 ± 0.3 (P = .01 for both changes). Homeostasis model assessment of beta-cell func tion increased in the salsalate-treatment group from 139.8 ± 11.0 to 189.4 ± 24.6 (P = .01). At the end of the study, FPG, HOMA-IR, and insulin levels were significantly different between salsalate and placebo groups (5.20 ± 0.11 mmol/L versus 5.53 ± 0.10 mmol/L, 3.8 ± 0.3 versus 4.4 ± 0.9, and 16.1 ± 1.9 μIU/mL versus 18.2 ± 2 μIU/mL, respectively; P < .05 for all). There were no persistent complications after salsalate therapy.ConclusionTreatment with salsalate can reduce insu lin resistance and the FPG level in subjects with predia betes. Determination of the long-term safety and efficacy of the use of salsalate necessitates further investigation. (Endocr Pract. 2012;18:826-833)  相似文献   

4.
5.

Background

Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes.

Objectives

The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters.

Methods

Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system.

Results

Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density.

Conclusion

Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain.  相似文献   

6.
The Src homology 2 domain-containing protein-tyrosine phosphatase Shp2 has been implicated in a variety of growth factor signaling pathways, but its role in insulin signaling has remained unresolved. In vitro studies suggest that Shp2 is both a negative and positive regulator of insulin signaling, although its physiological function in a number of peripheral insulin-responsive tissues remains unknown. To address the metabolic role of Shp2 in the liver, we generated mice with either chronic or acute hepatic Shp2 deletion using tissue-specific Cre-LoxP and adenoviral Cre approaches, respectively. We then analyzed insulin sensitivity, glucose tolerance, and insulin signaling in liver-specific Shp2-deficient and control mice. Mice with chronic Shp2 deletion exhibited improved insulin sensitivity and increased glucose tolerance compared with controls. Acute Shp2 deletion yielded comparable results, indicating that the observed metabolic effects are directly caused by the lack of Shp2 in the liver. These findings correlated with, and were most likely caused by, direct dephosphorylation of insulin receptor substrate (IRS)1/2 in the liver, accompanied by increased PI3K/Akt signaling. In contrast, insulin-induced ERK activation was dramatically attenuated, yet there was no effect on the putative ERK site on IRS1 (Ser612) or on S6 kinase 1 activity. These studies show that Shp2 is a negative regulator of hepatic insulin action, and its deletion enhances the activation of PI3K/Akt pathway downstream of the insulin receptor.  相似文献   

7.
《Cell metabolism》2020,31(3):592-604.e9
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   

8.
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.  相似文献   

9.
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu548:Leu575-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2–3-fold and 3–5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.  相似文献   

10.

Background

Apelin is an adipokine that plays a role in the regulation of glucose homeostasis and in obesity. The relationship between apelin serum concentration and dysmetabolic conditions such as type 2 diabetes (T2D) is still controversial. Aims of our study are: 1) determine the circulating levels of apelin in a large cohort of Italian subjects with T2D, T1D and in non-diabetic controls; 2) identify putative metabolic determinants of modified apelin concentrations, in order to search possible mechanism of apelin control; 3) investigate changes in apelin levels in response to sharp modifications of glucose/insulin metabolism in T2D obese subjects before and 3 days after bariatric surgery.

Methods

We recruited 369 subjects, 119 with T2D, 113 with T1D and 137 non-diabetic controls. All subjects underwent a complete clinical examination, including anthropometric and laboratory measurements. Serum apelin levels were determined by EIA (immunoenzyme assay).

Results

Patients with T2D had significantly higher serum apelin levels compared to controls (1.23±1.1 ng/mL vs 0.91±0.7 ng/mL, P<0.001) and to T1D subjects (0.73±0.39 ng/mL, P<0.001). Controls and T1D subjects did not differ significantly in apelin levels. Apelin concentrations were directly associated with fasting blood glucose (FBG), body mass index (BMI), basal Disposition Index (DI-0), age, and diagnosis of T2D at bivariate correlation analysis. Multiple regression analysis confirmed that diagnosis of T2D, basal DI-0 and FBG were all determinants of serum apelin levels independently from age and BMI. Bariatric surgery performed in a subgroup of obese diabetic subjects (n = 12) resulted in a significant reduction of apelin concentrations compared to baseline levels (P = 0.01).

Conclusions

Our study demonstrates that T2D, but not T1D, is associated with increased serum apelin levels compared to non-diabetic subjects. This association is dependent on impaired glucose homeostasis, and disappears after bariatric surgery, providing further evidence regarding the relationship between apelin and the regulation of glucose metabolism.  相似文献   

11.
Insulin resistance has been proposed as a critical factor in the development of Type II diabetes, hypertension, dyslipidemia, and coronary artery disease. However, even in normal healthy individuals, a wide range of in vivo insulin action has been found. In the present study we sought to examine this heterogeneity in Insulin action in both normal and spontaneously obese nonhuman primates. Maximal insulin responsiveness as measured by a hyperinsulinemic euglycemic clamp, fasting plasma glucose, and insulin levels, β-cell insulin response to glucose, glucose tolerance, and adiposity were measured in 22 male rhesus monkeys. Results showed that lean animals (body fat ≤ 22%) had higher insulin-stimulated glucose uptake (M rate: 14.42±1.8 mg/kg FFM/min) compared to obese (8.08±0.8). The obese monkeys, with 23–49% body fat, had a wide range of M values (5.32-14.29 mg/kg FFM/min) which showed no relationship to degree of adiposity. In all monkeys, M values had a strong inverse correlation with fasting plasma insulin levels (r=-0.76; p<0.001), but not with fasting glucose or glucose disappearance rate. We conclude that neither degree of obesity above a critical threshold nor range of glucose tolerance is related to insulin resistance; however, in individuals with normal glucose tolerance an early reliable indicator of defective insulin action appears to be fasting insulin concentration. Longitudinal determination of basal insulin levels obtained under standardized conditions so as to minimize extraneous variability is likely to strengthen the ability to predict insulin resistance and possible later development of overt Type II diabetes.  相似文献   

12.
MethodsTo investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.ResultsRYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.  相似文献   

13.
14.
PI3K-Akt信号传导通路对糖代谢的调控作用   总被引:1,自引:0,他引:1  
磷脂酰肌醇3-激酶(PI3Ks)作为酪氨酸激酶和G蛋白偶联受体的主要下游分子,通过催化产生第二信使3,4,5-三磷酸磷脂酰肌醇(PIP3)并激活Akt、糖原合酶激酶-3(GSK-3)、Forkhead转录因子FoxO1、mTOR(mammalian target of rapamycin)等下游分子,将多种生长因子及细胞因子的信号传递到细胞内,从而对细胞增殖、分化、凋亡和葡萄糖转运等多种生物过程起重要的调节作用.PTEN(phosphatase and tensin homologue)是PI3K信号通路的重要负调节因子.本文将对PI3K-Akt信号通路在糖代谢中的作用予以简要综述.  相似文献   

15.
Glucose intolerance in fluorosis areas and when fluoride is administered for the treatment of osteoporosis has been reported. Controlled fluoridation of drinking water is regarded as a safe and effective measure to control dental caries. However, the effect on glucose homeostasis was not studied so far. The aim of this study was to evaluate the effect of the intake of fluoridated water supply on glucose metabolism in rats with normal and deficient renal function. Male Sprague–Dawley rats were divided into eight groups of four rats. Renal insufficiency was induced in four groups (NX) which received drinking water containing 0, 1, 5, and 15 ppm F (NaF) for 60 days. Four groups with simulated surgery acted as controls. There were no differences in plasma glucose concentration after a glucose tolerance test between controls and NX rats and among rats with different intakes of fluoride. However, plasma insulin level increased as a function of fluoride concentration in drinking water, both in controls and in NX rats. It is concluded that the consumption of fluoridated water from water supply did not affect plasma glucose levels even in cases of animals with renal disease. However, a resistance to insulin action was demonstrated  相似文献   

16.
Clinical obesity is a complex metabolic disorder affecting one in three adults. Recent reports suggest that pregnane X receptor (PXR), a xenobiotic nuclear receptor important for defense against toxic agents and for eliminating drugs and other xenobiotics, may be involved in obesity. Noting differences in ligand specificities between human and mouse PXRs, the role of PXR in high fat diet (HFD)-induced obesity was examined using male PXR-humanized (hPXR) transgenic and PXR-knock-out (PXR-KO) mice in comparison to wild-type (WT) mice. After 16 weeks on either a control diet or HFD, WT mice showed greater weight gain, whereas PXR-KO mice gained less weight due to their resistance to HFD-induced decreases in adipose tissue peroxisome proliferator-activated receptor α and induction of hepatic carnitine palmitoyltransferase 1, suggesting increased energy metabolism. Interestingly, control-fed PXR-KO mice exhibited hepatomegaly, hyperinsulinemia, and hyperleptinemia but hypoadiponectinemia and lower adiponectin receptor R2 mRNA levels relative to WT mice. Evaluation of these biologic indicators in hPXR mice fed a control diet or HFD revealed further differences between the mouse and human receptors. Importantly, although HFD-fed hPXR mice were resistant to HFD-induced obesity, both PXR-KO and hPXR mice exhibited impaired induction of glucokinase involved in glucose utilization and displayed elevated fasting glucose levels and severely impaired glucose tolerance. Moreover, the basal hepatic levels of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase 1 were increased in hPXR mice compared with WT mice. Altogether, although the mouse PXR promotes HFD-induced obesity, the hPXR mouse carries a genetic predisposition for type 2 diabetes and thus provides a model for exploring the role of human PXR in the metabolic syndrome.  相似文献   

17.
18.
The maintenance of glucose homeostasis within the body is crucial for constant and precise performance of energy balance and is sustained by a number of peripheral organs. Estrogens are known to play a role in the maintenance of glucose homeostasis. Aromatase knockout (ArKO) mice are estrogen-deficient and display symptoms of dysregulated glucose metabolism. We aim to investigate the effects of estrogen ablation and exogenous estrogen administration on glucose homeostasis regulation. Six month-old female wildtype, ArKO, and 17β-estradiol (E2) treated ArKO mice were subjected to whole body tolerance tests, serum examination of estrogen, glucose and insulin, ex-vivo muscle glucose uptake, and insulin signaling pathway analyses. Female ArKO mice display increased body weight, gonadal (omental) adiposity, hyperinsulinemia, and liver triglycerides, which were ameliorated upon estrogen treatment. Tolerance tests revealed that estrogen-deficient ArKO mice were pyruvate intolerant hence reflecting dysregulated hepatic gluconeogenesis. Analyses of skeletal muscle, liver, and adipose tissues supported a hepatic-based glucose dysregulation, with a down-regulation of Akt phosphorylation (a key insulin signaling pathway molecule) in the ArKO liver, which was improved with E2 treatment. Concurrently, estrogen treatment lowered ArKO serum leptin and adiponectin levels and increased inflammatory adipokines such as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). Furthermore, estrogen deficiency resulted in the infiltration of CD45 macrophages into gonadal adipose tissues, which cannot be reversed by E2 treatment. This study describes the effects of estrogens on glucose homeostasis in female ArKO mice and highlights a primary phenotype of hepatic glucose dysregulation and a parallel estrogen modified adipokine profile.  相似文献   

19.

Aim

Glucagon is an essential regulator of hepatic glucose production (HGP), which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR), NPB112, on glucose homeostasis in diet-induced obese (DIO) mice.

Methods

The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP.

Results

Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min) compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min) in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment.

Conclusions

A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.  相似文献   

20.
Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/−) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP−/− mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAP−/− mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP−/− mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAP −/− mice, which could in part account for the metabolic phenotype in KRAP−/− mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号