首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because the frequency of heterospecific interactions inevitably increases with species richness in a community, biodiversity effects must be expressed by such interactions. However, little is understood how heterospecific interactions affect ecosystem productivity because rarely are biodiversity ecosystem functioning experiments spatially explicitly manipulated. To test the effect of heterospecific interactions on productivity, direct evidence of heterospecific neighborhood interaction is needed. In this study we conducted experiments with a detailed spatial design to investigate whether and how heterospecific neighborhood interactions promote primary productivity in a grassland community. The results showed that increasing the heterospecific: conspecific contact ratio significantly increased productivity. We found there was a significant difference in the variation in plant height between monoculture and mixture communities, suggesting that height-asymmetric competition for light plays a central role in promoting productivity. Heterospecific interactions make tall plants grow taller and short plants become smaller in mixtures compared to monocultures, thereby increasing the efficiency of light interception and utilization. Overyielding in the mixture communities arises from the fact that the loss in the growth of short plants is compensated by the increased growth of tall plants. The positive correlation between species richness and primary production was strengthened by increasing the frequency of heterospecific interactions. We conclude that species richness significantly promotes primary ecosystem production through heterospecific neighborhood interactions.  相似文献   

2.
草地群落的土壤呼吸   总被引:54,自引:2,他引:54  
通过土壤呼吸作用向大气释放CO2是陆地生态系统碳循环的一个最主要的环节,也是人类活动影响下陆地生态系统对大气中CO2浓度产生影响,从而导致全球气候变化的关键生态学过程,因而成为全球碳循环研究中倍受关注的核心问题[33,37,38]。1土壤呼吸的测定方...  相似文献   

3.
A central goal of ecosystem ecology is to understand how the cycling of nutrients and the growth of organisms are linked. Ecologists have repeatedly observed that nutrient mineralization and plant production are closely coupled in time in many terrestrial ecosystems. Typically, mineralization rates of limiting nutrients, particularly of nitrogen, during the growing season determine nutrient availability while pools of mineral nutrients remain low and relatively constant. Although several previous reports suggest nitrogen mineralization has the potential to vary seasonally and out of phase with plant production, such a phenomenon has been poorly documented. Here we report results from a semiarid savanna ecosystem characterized by distinct temporal asynchrony in rates of soil nitrogen cycling and plant production. Periods of positive plant growth following the onset of rains coincide with periods of low N turnover rates, whereas higher rates occur late in the wet season following plant senescence and throughout dry seasons. Plant uptake from the substantial mineral N pool present early in the growing season is sufficient to explain most of the N allocation to aboveground plant biomass during the growing season, even in the absence of any wet-season mineralization. The mineral N pool is subsequently recharged by late wet- and dry-season mineralization, plus urine inputs at sites with high levels of ungulate activity. These findings suggest fundamental changes in the quality of substrates available to decomposers over a seasonal cycle, with significant implications for the partitioning of limiting nutrients by plant species, the seasonal pattern of nutrient limitations of aboveground production, and the effective use of N fertilizers in semiarid ecosystems.  相似文献   

4.
Soil bacteria are important contributors to primary productivity and nutrient cycling in arid land ecosystems, and their populations may be greatly affected by changes in environmental conditions. In parallel studies, the composition of the total bacterial community and of members of the Acidobacterium division were assessed in arid grassland soils using terminal restriction fragment length polymorphism (TRF, also known as T-RFLP) analysis of 16S rRNA genes amplified from soil DNA. Bacterial communities associated with the rhizospheres of the native bunchgrasses Stipa hymenoides and Hilaria jamesii, the invading annual grass Bromus tectorum, and the interspaces colonized by cyanobacterial soil crusts were compared at three depths. When used in a replicated field-scale study, TRF analysis was useful for identifying broad-scale, consistent differences in the bacterial communities in different soil locations, over the natural microscale heterogeneity of the soil. The compositions of the total bacterial community and Acidobacterium division in the soil crust interspaces were significantly different from those of the plant rhizospheres. Major differences were also observed in the rhizospheres of the three plant species and were most apparent with analysis of the Acidobacterium division. The total bacterial community and the Acidobacterium division bacteria were affected by soil depth in both the interspaces and plant rhizospheres. This study provides a baseline for monitoring bacterial community structure and dynamics with changes in plant cover and environmental conditions in the arid grasslands.  相似文献   

5.
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.  相似文献   

6.
Yang  Bo  Liang  Yu  Schmid  Bernhard  Baruffol  Martin  Li  Yangfan  He  Ling  Salmon  Yann  Tian  Qiuyang  Niklaus  Pascal A.  Ma  Keping 《Ecosystems》2022,25(4):858-871
Ecosystems - Soil fungi are a major factor maintaining plant diversity and productivity, but the underlying mechanisms are still poorly understood. Based on a biodiversity–ecosystem...  相似文献   

7.
8.
Zhou  Tianyang  Zhang  Jiaxin  Qin  Yuanzhi  Zhou  Gang  Wang  Congrong  Xu  Yaozhan  Fei  Yanan  Qiao  Xiujuan  Jiang  Mingxi 《Ecosystems》2023,26(4):740-751
Ecosystems - The relationships between biodiversity and community stability have been well-documented in grassland ecosystems, yet the diversity–stability relationship and the mechanisms...  相似文献   

9.
Soil organisms can strongly affect competitive interactions and successional replacements of grassland plant species. However, introduction of whole soil communities as management strategy in grassland restoration has received little experimental testing. In a 5-year field experiment at a topsoil-removed ex-arable site ( receptor site ), we tested effects of (1) spreading hay and soil, independently or combined, and (2) transplanting intact turfs on plant and soil nematode community development. Material for the treatments was obtained from later successional, species-rich grassland ( donor site ). Spreading hay affected plant community composition, whereas spreading soil did not have additional effects. Plant species composition of transplanted turfs became less similar to that in the donor site. Moreover, most plants did not expand into the receiving plots. Soil spreading and turf transplantation did not affect soil nematode community composition. Unfavorable soil conditions (e.g., low organic matter content and seasonal fluctuations in water level) at the receptor site may have limited plant and nematode survival in the turfs and may have precluded successful establishment outside the turfs. We conclude that introduction of later successional soil organisms into a topsoil-removed soil did not facilitate the establishment of later successional plants, probably because of the "mismatch" in abiotic soil conditions between the donor and the receptor site. Further research should focus on the required conditions for establishment of soil organisms at restoration sites in order to make use of their contribution to grassland restoration. We propose that introduction of organisms from "intermediate" stages will be more effective as management strategy than introduction of organisms from "target" stages.  相似文献   

10.
The decline in grasslands and other species‐rich early successional habitats on the coastal sandplains of the northeastern United States has spurred management to increase the area of these declining plant communities. We mechanically removed overstory oak and applied seed from a nearby sandplain grassland on the island of Martha’s Vineyard, Massachusetts, to evaluate this technique for creating an open oak community able to support sandplain herbaceous species. We compared vegetation structure and composition before and after clearing in an area of total tree removal (clearcutting), an area where 85% of tree basal area was removed (savanna cutting), and in adjacent coastal oak forest. Plant responses to clearcutting and savanna cutting were similar. Sandplain herbs colonized at high frequencies after seeding and increased herbaceous cover from less than 7% before clearing to 22–38% three growing seasons later. Pennsylvania sedge (Carex pensylvanica) increased in cover approximately 6‐fold, accounting for 84–90% of the increased herbaceous cover. Other native ruderals and exotic herbs reached 2 and less than or equal to 1%, cover, respectively, after three years. Species richness across cleared treatments increased from 30 to 79 species. All forest species were retained. Forest shrubs and trees initially declined from their dominant cover but rebounded after three years. Tree clearing plus seeding appeared to be a viable management practice for increasing cover of herbaceous sandplain species while causing minimal increases in exotic herbaceous cover. The long‐term persistence of sandplain herbs may require periodic disturbances that limit woody regrowth.  相似文献   

11.
Farrell  Mark  Prober  Suzanne M. 《Ecosystems》2021,24(6):1500-1515
Ecosystems - Restoration of many grassland ecosystems is dependent on restoring native N cycling regimes, through methods such as nutrient stripping, C addition, and/or re-establishment of keystone...  相似文献   

12.
13.
荒漠草原3种典型群落类型的土壤微生物量碳氮研究   总被引:1,自引:0,他引:1  
采用氯仿熏蒸-浸提法,以宁夏盐池荒漠草原3种典型群落(柠条、沙蒿、短花针茅)类型为研究对象,分析了不同生境(冠下、丛间)和不同土层间(0~5、5~10、10~15cm)土壤理化性质及微生物量——微生物量碳(MBC)和微生物量氮(MBN)的变化特征。结果表明:(1)3种群落土壤微生物量变化差异较大,柠条、沙蒿和短花针茅群落土壤MBC含量分别为77.00~393.18、17.27~221.71和81.05~173.37mg/kg,MBN含量分别为7.59~64.81、1.43~13.95和4.25~22.13mg/kg,MBC和MBN含量均表现为:冠下丛间,且随土层深度的增加而降低,有明显的"沃岛效应"。(2)群落类型对土壤微生物量碳氮含量的变化有显著影响,3种典型群落类型下土壤微生物量熵(qMB)、碳氮比(C/N)、微生物量碳氮比(MBC/MBN)分别在0.76~4.10、15.02~52.50、5.34~23.07范围内变化,其比值在不同生境和不同土层深度的分布特征有明显差异。(3)3种典型群落类型的土壤MBC与SOC、MBN、qMB具有显著相关关系,土壤C/N与MBC/MBN呈显著正相关关系,表明土壤MBC、MBN具有一定的生物学指示特性,可以作为评价土壤质量的生物学指标。  相似文献   

14.
为了明确荒漠草原区土壤机械组成与养分的关系,以宁夏盐池荒漠草原4种典型群落为研究对象,通过对不同群落(柠条、沙蒿、蒙古冰草、短花针茅)表层(0~5cm)、亚表层(5~10cm)和深层(10~15cm)土壤粒径分布分形(PSD)、养分含量的动态变化分析,揭示荒漠草原区土壤结构与土壤养分的相关性。结果表明:(1)4种典型群落土壤PSD均呈正态分布,不同群落间的土壤PSD差异显著,粒径100~500μm颗粒含量对PSD影响最大,不同群落间的差异大于不同生境间或不同土层间。(2)4种典型群落除全磷(TP)外,其余土壤全肥均随土壤深度增加呈降低趋势,且冠下大于丛间,表现出荒漠草原区特殊的"肥岛"聚集效应,不同群落间分布特征均表现为:柠条短花针茅蒙古冰草沙蒿,速效养分含量相对较高,各群落均达到适宜水平。(3)土壤养分与土壤PSD显著相关,除速效磷(AP)外,其余土壤养分与土壤分形维数(D)均呈正相关关系,粒径100~250μm、250~500μm颗粒与土壤养分呈显著或极显著负相关关系,土壤中的黏粒、粉粒在有机无机胶结过程及土壤良好的结构维持中起主要作用。  相似文献   

15.
Microbial communities in soils may change in accordance with distance, season, climate, soil texture and other environmental parameters. Microbial diversity patterns have been extensively surveyed in temperate regions, but few such studies attempted to address them with respect to spatial and temporal scales and their correlations to environmental factors, especially in arid ecosystems. In order to fill this gap on a regional scale, the molecular fingerprints and abundance of three taxonomic groups – Bacteria, α-Proteobacteria and Actinobacteria – were sampled from soils 0.5–100 km apart in arid, semi-arid, dry Mediterranean and shoreline Mediterranean regions in Israel. Additionally, on a local scale, the molecular fingerprints of three taxonomic groups – Bacteria, Archaea and Fungi – were sampled from soils 1 cm–500 m apart in the semi-arid region, in both summer and winter. Fingerprints of the Bacteria differentiated between all regions (P<0.02), while those of the α-Proteobacteria differentiated between some of the regions (0.01<P<0.09), and actinobacterial fingerprints were similar among all regions (P>0.05). Locally, fingerprints of archaea and fungi did not display distance-decay relationships (P>0.13), that is, the dissimilarity between communities did not increase with geographic distance. Neither was this phenomenon evident in bacterial samples in summer (P>0.24); in winter, however, differences between bacterial communities significantly increased as the geographic distances between them grew (P<0.01). Microbial community structures, as well as microbial abundance, were both significantly correlated to precipitation and soil characteristics: texture, organic matter and water content (R2>0.60, P<0.01). We conclude that on the whole, microbial biogeography in arid and semi-arid soils in Israel is determined more by specific environmental factors than geographic distances and spatial distribution patterns.  相似文献   

16.
Phenotypic analysis of defects caused by RNA mediated interference (RNAi) in Caenorhabditis elegans has proven to be a powerful tool for determining gene function. In this study we investigated the effectiveness of RNAi in four non-model grassland soil nematodes, Oscheius sp FVV-2., Rhabditis sp, Mesorhabditis sp., and Acrobeloides sp. In contrast to reference experiments performed using C. elegans and Caenorhabditis briggsae, feeding bacteria expressing dsRNA and injecting dsRNA into the gonad did not produce the expected RNAi knockdown phenotypes in any of the grassland nematodes. Quantitative reverse-transcribed PCR (qRT-PCR) assays did not detect a statistically significant reduction in the mRNA levels of endogenous genes targeted by RNAi in Oscheius sp., and Mesorhabditis sp. From these studies we conclude that due to low effectiveness and inconsistent reproducibility, RNAi knockdown phenotypes in non-Caenorhabditis nematodes should be interpreted cautiously.  相似文献   

17.
Ecosystems - There is increasing awareness that plant community functional properties can be an important driver of ecosystem functioning. However, major knowledge gaps exist about how...  相似文献   

18.
Habitat loss and fragmentation are leading causes of species extinctions in terrestrial, aquatic and marine systems. Along coastlines, natural habitats support high biodiversity and valuable ecosystem services but are often replaced with engineered structures for coastal protection or erosion control. We coupled high-resolution shoreline condition data with an eleven-year time series of fish community structure to examine how coastal protection structures impact community stability. Our analyses revealed that the most stable fish communities were nearest natural shorelines. Structurally complex engineered shorelines appeared to promote greater stability than simpler alternatives as communities nearest vertical walls, which are among the most prevalent structures, were most dissimilar from natural shorelines and had the lowest stability. We conclude that conserving and restoring natural habitats is essential for promoting ecological stability. However, in scenarios when natural habitats are not viable, engineered landscapes designed to mimic the complexity of natural habitats may provide similar ecological functions.  相似文献   

19.
Studies on the importance of seed arrival for community richness and composition have not considered the number of seeds arriving and its effect on species richness and composition of natural communities is thus unknown. A series of experimental dry grassland communities were established. All communities were composed of the same 44 species in exactly the same proportions on two substrates using three different seed densities.The results showed that seed density had an effect on species richness only at the beginning of the experiment. In contrast, the effects on species composition persisted across the entire study period. The results do not support the prediction that due to higher competition for light in nutrient-rich soil, species richness will be the highest in the treatment with the lowest seed density. However, the prevalence of small plants in the lowest seed density supported the expectation that low seed density guarantees low competition under high soil nutrients. In the nutrient-poor soil, species richness was the highest at the medium seed density, indicating that species richness reflects the balance between competition and limitations caused by the availability of propagules or their ability to establish themselves. This medium seed density treatment also contained the smallest plants.The results demonstrate that future seed addition experiments need to consider the amount of seed added so that it reflects the amount of seed that is naturally found in the field. Differences in seed density, mimicking different intensity of the seed rain may also explain differences in the composition of natural communities that cannot be attributed to habitat conditions. The results also have important implications for studies regarding the consequences of habitat fragmentation suggesting that increasing fragmentation may change species compositions not only due to different dispersal abilities but also due to differential response of plants to overall seed density.  相似文献   

20.
Agricultural improvement (addition of fertilizers, liming) of seminatural acidic grasslands across Ireland and the UK has resulted in significant shifts in floristic composition, soil chemistry, and microbial community structure. Although several factors have been proposed as responsible for driving shifts in microbial communities, the exact causes of such changes are not well defined. Phosphate was added to grassland microcosms to investigate the effect on fungal and bacterial communities. Plant species typical of unimproved grasslands (Agrostis capillaris, Festuca ovina) and agriculturally improved grasslands (Lolium perenne) were grown, and phosphate was added 25 days after seed germination, with harvesting after a further 50 days. Phosphate addition significantly increased root biomass (p < 0.001) and shoot biomass (p < 0.05), soil pH (by 0.1 U), and microbial activity (by 5.33 mg triphenylformazan [TPF] g−1 soil; p < 0.001). A slight decrease (by 0.257 mg biomass-C g−1 soil; p < 0.05) in microbial biomass after phosphate addition was found. The presence of plant species significantly decreased soil pH (p < 0.05; by up to 0.2 U) and increased microbial activity (by up to 6.02 mg TPF g−1 soil) but had no significant effect on microbial biomass. Microbial communities were profiled using automated ribosomal intergenic spacer analysis. Multidimensional scaling plots and canonical correspondence analysis revealed that phosphate addition and its interactions with upland grassland plant species resulted in considerable changes in the fungal and bacterial communities of upland soil. The fungal community structure was significantly affected by both phosphate (R = 0.948) and plant species (R = 0.857), and the bacterial community structure was also significantly affected by phosphate (R = 0.758) and plant species (R = 0.753). Differences in microbial community structure following P addition were also revealed by similarity percentage analysis. These data suggest that phosphate application may be an important contributor to microbial community structural change during agricultural management of upland grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号