首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uncertainty exists regarding the physiologically relevant fibroblast growth factor (FGF) receptor (FGFR) for FGF23 in the kidney and the precise tubular segments that are targeted by FGF23. Current data suggest that FGF23 targets the FGFR1c-Klotho complex to coordinately regulate phosphate transport and 1,25-dihydroxyvitamin D [1,25(OH)(2)D] production in the proximal tubule. In studies using the Hyp mouse model, which displays FGF23-mediated hypophosphatemia and aberrant vitamin D, deletion of Fgfr3 or Fgfr4 alone failed to correct the Hyp phenotype. To determine whether FGFR1 is sufficient to mediate the renal effects of FGF23, we deleted Fgfr3 and Fgfr4 in Hyp mice, leaving intact the FGFR1 pathway by transferring compound Fgfr3/Fgfr4-null mice on the Hyp background to create wild-type (WT), Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. We found that deletion of Fgfr3 and Fgfr4 in Fgfr3(-/-)/Fgfr4(-/-) and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice induced an increase in 1,25(OH)(2)D. In Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, it partially corrected the hypophosphatemia (P(i) = 9.4 ± 0.9, 6.1 ± 0.2, 9.1 ± 0.4, and 8.0 ± 0.5 mg/dl in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), increased Na-phosphate cotransporter Napi2a and Napi2c and Klotho mRNA expression in the kidney, and markedly increased serum FGF23 levels (107 ± 20, 3,680 ± 284, 167 ± 22, and 18,492 ± 1,547 pg/ml in WT, Hyp, Fgfr3(-/-)/Fgfr4(-/-), and Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice, respectively), consistent with a compensatory response to the induction of end-organ resistance. Fgfr1 expression was unchanged in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice and was not sufficient to transduce the full effects of FGF23 in Hyp/Fgfr3(-/-)/Fgfr4(-/-) mice. These studies suggest that FGFR1, FGFR3, and FGFR4 act in concert to mediate FGF23 effects on the kidney and that loss of FGFR function leads to feedback stimulation of Fgf23 expression in bone.  相似文献   

2.
3.
Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.  相似文献   

4.
The phosphaturic hormone Fibroblast Growth Factor 23 (FGF23) controls phosphate homeostasis by regulating renal expression of sodium-dependent phosphate co-transporters and cytochrome P450 enzymes involved in vitamin D catabolism. Multiple FGF Receptors (FGFRs) can act as receptors for FGF23 when bound by the co-receptor Klotho expressed in the renal tubular epithelium. FGFRs also regulate skeletal FGF23 secretion; ectopic FGFR activation is implicated in genetic conditions associated with FGF23 overproduction and hypophosphatemia. The identity of FGFRs that mediate the activity of FGF23 or that regulate skeletal FGF23 secretion remains ill defined. Here we report that pharmacological activation of FGFR1 with monoclonal anti-FGFR1 antibodies (R1MAb) in adult mice is sufficient to cause an elevation in serum FGF23 and mild hypophosphatemia. In cultured rat calvariae osteoblasts, R1MAb induces FGF23 mRNA expression and FGF23 protein secretion into the culture medium. In a cultured kidney epithelial cell line, R1MAb acts as a functional FGF23 mimetic and activates the FGF23 program. siRNA-mediated Fgfr1 knockdown induced the opposite effects. Taken together, our work reveals the central role of FGFR1 in the regulation of FGF23 production and signal transduction, and has implications in the pathogenesis of FGF23-related hypophosphatemic disorders.  相似文献   

5.
Endothelial progenitor cells (EPCs) contribute to neovascularization and vascular repair, and may exert a beneficial effect on the clinical outcome of sepsis. Osteoblasts act as a component of “niche” in bone marrow, which provides a nest for stem/progenitor cells and are involved in the formation and maintenance of stem/progenitor cells. Fibroblast growth factor receptor 1 (FGFR1) can regulate osteoblast activity and influence bone mass. So we explored the role of FGFR1 in EPC mobilization. Male mice with osteoblast-specific knockout of Fgfr1 (Fgfr1fl/fl;OC-Cre) and its wild-type littermates (Fgfr1fl/fl) were used in this study. Mice intraperitoneally injected with lipopolysaccharide (LPS) were used to measure the number of circulating EPCs in peripheral blood and serum stromal cell-derived factor 1α (SDF-1α). The circulating EPC number and the serum level of SDF-1α were significantly higher in Fgfr1fl/fl;OC-Cre mice than those in Fgfr1fl/fl mice after LPS injection. In cell culture system, SDF-1α level was also significantly higher in Fgfr1fl/fl;OC-Cre osteoblasts compared with that in Fgfr1fl/fl osteoblasts after LPS treatment. TRAP staining showed that there was no significant difference between the osteoclast activity of septic Fgfr1fl/fland Fgfr1fl/fl;OC-Cre mice. This study suggests that targeted deletion of Fgfr1 in osteoblasts enhances mobilization of EPCs into peripheral blood through up-regulating SDF-1α secretion from osteoblasts.  相似文献   

6.
Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10(-9) m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10(-9) m). Low concentrations of FGF-23 (10(-13) m) and PTH (10(-11) m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway.  相似文献   

7.
To elucidate the direct role and mechanism of FGFR1 signaling in the differentiation and activation of osteoclasts, we conditionally inactivated FGFR1 in bone marrow monocytes and mature osteoclasts of mice. Mice deficient in FGFR1 (Fgfr1−/−) exhibited misregulated bone remodeling with reduced osteoclast number and impaired osteoclast function. In vitro assay demonstrated that the number of tartrate-resistant acid phosphatase (TRAP) positive osteoclasts derived from bone marrow monocytes of Fgfr1−/− mice was significantly diminished. The bone resorption activity of mature osteoclasts derived from Fgfr1−/− mice was also suppressed. Further analysis showed that the osteoclasts with FGFR1 deficiency exhibited downregulated expression of genes related to osteoclastic activity including TRAP and MMP-9. The phosphorylation of Erk1/2 mitogen-activated protein (MAP) kinase was also decreased. Our results suggest that FGFR1 is indispensable for complete differentiation and activation of osteoclasts in mice.  相似文献   

8.
Fibroblast growth factor-23 (FGF-23) secreted by osteocytes is known as a circulating factor that is essential for phosphate homeostasis. Recent studies have implicated FGF-23 in the nociceptive signalling of peripheral sensory neurons. However, the relevant mechanisms underlying this effect are not known. In this study, we determine the role of FGF-23 in regulating T-type Ca2+ channels (T-type channels) in small-diameter dorsal root ganglion (DRG) neurons in mice. Our results show that FGF-23 increases T-type channel currents in a concentration-dependent manner. This FGF-23-induced response was dependent on FGF type 1 receptor (FGFR1) and was accompanied by a depolarizing shift in the steady-state inactivation curve. Pretreatment of neurons with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 prevented the FGF-23-mediated T-type channel response. Analysis of phospho-Akt (p-Akt) revealed that FGF-23 significantly activated Akt, but Akt inhibition did not affect the FGF-23-induced T-type channel current increase. The cell-permeable protein kinase A (PKA) inhibitor KT-5720 pretreatment and intracellular application of PKI 6–22 both abolished the stimulatory effects of FGF-23 on T-type channels, but inhibition of PKC had no effect. In summary, these findings indicate that FGF-23 stimulates T-type channel activity via activation of FGFR1, which is coupled to the PI3K-dependent PKA signalling cascade in small DRG neurons.  相似文献   

9.
Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. Pi is abundant in the diet, and intestinal absorption of Pi is efficient and minimally regulated. The kidney is a major regulator of Pi homeostasis and can increase or decrease its Pi reabsorptive capacity to accommodate Pi need. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium-dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by hormones and nonhormonal factors. Recent studies of inherited and acquired hypophosphatemia which exhibit similar biochemical and clinical features, have led to the identification of novel genes, phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and fibroblast growth factor-23 (FGF-23), that play a role in the regulation of Pi homeostasis. The PHEX gene encodes an endopeptidase, predominantly expressed in bone and teeth but not in kidney. FGF-23 may be a substrate of this endopeptidase and inhibit renal Pi reabsorption. In a survey in the United States and in Japan, the amount of phosphorus from food is gradually increasing. It is thought that excess amounts of phosphorus intake for long periods are a strong factor in bone impairment and ageing. The restriction of phosphorus intake seems to be important under low calcium intake to keep QOL on high level.  相似文献   

10.
Apert syndrome (AS) is a type of autosomal dominant disease characterized by premature fusion of the cranial sutures, severe syndactyly, and other abnormalities in internal organs. Approximately 70% of AS cases are caused by a single mutation, S252W, in fibroblast growth factor receptor 2 (FGFR2). Two groups have generated FGFR2 knock-in mice Fgfr2S252W/+ that exhibit features of AS. During the present study of AS using the Fgfr2S252W/+ mouse model, an age-related phenotype of bone homeostasis was discovered. The long bone mass was lower in 2 month old mutant mice than in age-matched controls but higher in 5 month old mutant mice. This unusual phenotype suggested that bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to maintain bone homeostasis, might be involved. BMSCs were isolated from Fgfr2S252W/+ mice and found that S252W mutation could impair osteogenic differentiation BMSCs but enhance mineralization of more mature osteoblasts. A microarray analysis revealed that Wnt pathway inhibitors SRFP1/2/4 were up-regulated in mutant BMSCs. This work provides evidence to show that the Wnt/β-catenin pathway is inhibited in both mutant BMSCs and osteoblasts, and differentiation defects of these cells can be ameliorated by Wnt3a treatment. The present study suggested that the bone abnormalities caused by deregulation of Wnt pathway may underlie the symptoms of AS.  相似文献   

11.
Fibroblast growth factor receptor 3 (FGFR3) is a key regulator of skeletal development and activating mutations in FGFR3 cause skeletal dysplasias, including hypochondroplasia, achondroplasia and thanatophoric dysplasia. The introduction of the Y367C mutation corresponding to the human Y373C thanatophoric dysplasia type I (TDI) mutation into the mouse genome, resulted in dwarfism with a skeletal phenotype remarkably similar to that of human chondrodysplasia. To investigate the role of the activating Fgfr3 Y367C mutation in auditory function, the middle and inner ear of the heterozygous mutant Fgfr3Y367C/+ mice were examined. The mutant Fgfr3Y367C/+ mice exhibit fully penetrant deafness with a significantly elevated auditory brainstem response threshold for all frequencies tested. The inner ear defect is mainly associated with an increased number of pillar cells or modified supporting cells in the organ of Corti. Hearing loss in the Fgfr3Y367C/+ mouse model demonstrates the crucial role of Fgfr3 in the development of the inner ear and provides novel insight on the biological consequences of FGFR3 mutations in chondrodysplasia.  相似文献   

12.
13.
Abnormal blood cell production is associated with chronic kidney disease (CKD) and cardiovascular disease (CVD). Bone-derived FGF-23 (fibroblast growth factor-23) regulates phosphate homeostasis and bone mineralization. Genetic deletion of Fgf-23 in mice (Fgf-23−/−) results in hypervitaminosis D, abnormal mineral metabolism, and reduced lymphatic organ size. Elevated FGF-23 levels are linked to CKD and greater risk of CVD, left ventricular hypertrophy, and mortality in dialysis patients. However, whether FGF-23 is involved in the regulation of erythropoiesis is unknown. Here we report that loss of FGF-23 results in increased hematopoietic stem cell frequency associated with increased erythropoiesis in peripheral blood and bone marrow in young adult mice. In particular, these hematopoietic changes are also detected in fetal livers, suggesting that they are not the result of altered bone marrow niche alone. Most importantly, administration of FGF-23 in wild-type mice results in a rapid decrease in erythropoiesis. Finally, we show that the effect of FGF-23 on erythropoiesis is independent of the high vitamin D levels in these mice. Our studies suggest a novel role for FGF-23 in erythrocyte production and differentiation and suggest that elevated FGF-23 levels contribute to the pathogenesis of anemia in patients with CKD and CVD.  相似文献   

14.
The phosphorylation of the sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) plays a key role in the regulation of renal phosphate transport by parathyroid hormone (PTH) and dopamine. Ser77 in the first PDZ domain of NHERF-1 is a downstream target of both hormones. The current experiments explore the role of Thr95, another phosphate acceptor site in the PDZ I domain, on hormone-mediated regulation of phosphate transport in the proximal tubule of the kidney. The substitution of alanine for threonine at position 95 (T95A) significantly decreased the rate and extent of in vitro phosphorylation of Ser77 by PKC. In NHERF-1-null proximal tubule cells, neither PTH nor dopamine inhibited sodium-dependent phosphate transport. Infection of the cells with adenovirus expressing full-length WT GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of both PTH and dopamine. Infection with full-length NHERF-1 containing a T95A mutation, however, increased basal phosphate transport but not the responsiveness to either hormone. As determined by surface plasmon resonance, the substitution of serine for aspartic acid (S77D) in the PDZ I domain decreased the binding affinity to the sodium-dependent phosphate transporter 2a (Npt2a) as compared with WT PDZ I, but a T95D mutation had no effect on binding. Finally, cellular studies indicated that both PTH and dopamine treatment increased the phosphorylation of Thr95. These studies indicate a remarkable cooperativity between the phosphorylation of Thr95 and Ser77 of NHERF-1 in the hormonal regulation of renal phosphate transport. The phosphorylation of Thr95 facilitates the phosphorylation of Ser77. This, in turn, results in the dissociation of NHERF-1 from Npt2a and a decrease in phosphate transport in renal proximal tubule cells.  相似文献   

15.
The kidney is a key player of phosphate balance, it determines serum phosphate levels by coupling phosphate reabsorption in the renal proximal tubule, calcitriol synthesis and consequently intestinal phosphate absorption. The identification of fibroblast growth factor 23 (FGF23) as a hormone regulating phosphate and calcitriol metabolism has unveiled the mechanisms that coordinate these renal proximal tubule functions. A bone–kidney axis has emerged that controls bone mineralization. Animal model studies have improved our understanding of phosphate homeostasis and revealed the role of the protein Klotho, which is mandatory to FGF23 action. In this review we detail FGF23 and Klotho implications in physiology and in genetic or acquired disorders. Phosphate ion is involved in vascular and soft tissue calcification and is important for cell proliferation. Disorders of FGF23–Klotho axis alter life-span and the survival in some cancers.  相似文献   

16.
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.  相似文献   

17.
18.
Prostate stem cells (P-SCs) are capable of giving rise to all three lineages of prostate epithelial cells, which include basal, luminal, and neuroendocrine cells. Two types of P-SCs have been identified in both human and mouse adult prostates based on prostasphere or organoid cultures, cell lineage tracing, renal capsule implantation, and expression of luminal- and basal-specific proteins. The sphere-forming P-SCs are from the basal cell compartment that express P63, and are therefore designated as basal P-SCs (P-bSCs). Luminal P-SCs (P-lSCs) express luminal cytokeratins and Nkx3.1. Herein, we report that the type 2 FGF receptor (FGFR2) signaling axis is crucial for preserving stemness and preventing differentiation of P-bSCs. FGFR2 signaling mediated by FGFR substrate 2α (FRS2α) is indispensable for formation and maintenance of prostaspheres derived from P63+ P-bSCs. Ablation of Fgfr2 in P63+ cells in vitro causes the disintegration of prostaspheres. Ablation of Fgfr2 in vivo reduces the number of P63-expressing basal cells and enriches luminal cells. This suggests a basal stem cell-to-luminal cell differentiation. In addition, ablation of Fgfr2 in P63+ cells causes defective postnatal development of the prostate. Therefore, the data indicate that FGFR2 signaling is critical for preserving stemness and preventing differentiation of P-bSCs.  相似文献   

19.
Inorganic phosphate (Pi) is required for cellular function and skeletal mineralization. Serum Pi level is maintained within a narrow range through a complex interplay between intestinal absorption, exchange with intracellular and bone storage pools, and renal tubular reabsorption. The crucial regulated step in Pi homeostasis is the transport of Pi across the renal proximal tubule. Type II sodium-dependent phosphate (Na/Pi) cotransporter (NPT2) is the major molecule in the renal proximal tubule and is regulated by Pi, parathyroid hormone and by 1,25-dihydroxyvitamin D. Recent studies of inherited and acquired hypophosphatemia [X-linked hypophosphatemic rickets/osteomalacia (XLH), autosomal dominant hypophosphatemic rickets/osteomalacia (ADHR) and tumor-induced rickets/osteomalacia (TIO)], which exhibit similar biochemical and clinical features, have led to the identification of novel genes, PHEX and FGF23, that play a role in the regulation of Pi homeostasis. The PHEX gene, which is mutated in XLH, encodes an endopeptidase, predominantly expressed in bone and teeth, but not in kidney. FGF-23 may be a substrate of this endopeptidase and may therefore accumulate in patients with XLH. In the case of ADHR mutations in the furin cleavage site, which prevent the processing of FGF-23 into fragments, lead to the accumulation of a "stable" circulating form of the peptide which also inhibits renal Pi reabsorption. In the case of TIO, ectopic overproduction of FGF-23 overwhelms its processing and degradation by PHEX, leading to the accumulation of FGF-23 in the circulation and inhibition of renal Pi reabsorption. Mice homozygous for severely hypomorphic alleles of the Klotho gene exhibit a syndrome resembling human aging, including atherosclerosis, osteoporosis, emphysema, and infertility. The KLOTHO locus is associated with human survival, defined as postnatal life expectancy, and longevity, defined as life expectancy after 75. In considering the relationship of klotho expression to the dietary Pi level, the klotho protein seemed to be negatively controlled by dietary Pi.  相似文献   

20.
《Autophagy》2013,9(5):826-837
Autophagy is responsible for the degradation of protein aggregates and damaged organelles. Several studies have reported increased autophagic activity in tubular cells after kidney injury. Here, we examine the role of tubular cell autophagy in vivo under both physiological conditions and stress using two different tubular-specific Atg5-knockout mouse models. While Atg5 deletion in distal tubule cells does not cause a significant alteration in kidney function, deleting Atg5 in both distal and proximal tubule cells results in impaired kidney function. Already under physiological conditions, Atg5-null tubule cells display a significant accumulation of p62 and oxidative stress markers. Strikingly, tubular cell Atg5-deficiency dramatically sensitizes the kidneys to ischemic injury, resulting in impaired kidney function, accumulation of damaged mitochondria as well as increased tubular cell apoptosis and proliferation, highlighting the critical role that autophagy plays in maintaining tubular cell integrity during stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号