首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Listeria monocytogenes is an important foodborne pathogen responsible for the disease listeriosis, and can be found throughout the environment, in many foods and in food processing facilities. The main cause of listeriosis is consumption of food contaminated from sources in food processing environments. Persistence in food processing facilities has previously been shown for the L. monocytogenes sequence type (ST) 8 subtype. In the current study, five ST8 strains were subjected to whole-genome sequencing and compared with five additionally available ST8 genomes, allowing comparison of strains from salmon, poultry and cheese industry, in addition to a human clinical isolate. Genome-wide analysis of single-nucleotide polymorphisms (SNPs) confirmed that almost identical strains were detected in a Danish salmon processing plant in 1996 and in a Norwegian salmon processing plant in 2001 and 2011. Furthermore, we show that L. monocytogenes ST8 was likely to have been transferred between two poultry processing plants as a result of relocation of processing equipment. The SNP data were used to infer the phylogeny of the ST8 strains, separating them into two main genetic groups. Within each group, the plasmid and prophage content was almost entirely conserved, but between groups, these sequences showed strong divergence. The accessory genome of the ST8 strains harbored genetic elements which could be involved in rendering the ST8 strains resilient to incoming mobile genetic elements. These included two restriction-modification loci, one of which was predicted to show phase variable recognition sequence specificity through site-specific domain shuffling. Analysis indicated that the ST8 strains harbor all important known L. monocytogenes virulence factors, and ST8 strains are commonly identified as the causative agents of invasive listeriosis. Therefore, the persistence of this L. monocytogenes subtype in food processing facilities poses a significant concern for food safety.  相似文献   

2.
3.
The foraging decisions of flower-visiting animals are contingent upon the need of an individual to meet both energetic and osmotic demands. Insects can alter their food preferences to prioritize one need over the other, depending on environmental conditions. In this study, preferences in nectar sugar concentrations (0, 12, 24 %) were tested in the hawkmoth Manduca sexta, in response to different levels of ambient humidity (20, 40, 60, and 80 % RH). Moths altered their foraging behavior when placed in low humidity environments by increasing the volume of nectar imbibed and by consuming more dilute nectar. When placed in high humidity environments the total volume imbibed decreased, because moths consumed less from dilute nectars (water and 12 % sucrose). Survivorship was higher with higher humidity. Daily foraging patterns changed with relative humidity (RH): moths maximized their nectar consumption earlier, at lower humidities. Although ambient humidity had an impact on foraging activity, activity levels and nectar preferences, total energy intake was not affected. These results show that foraging decisions made by M. sexta kept under different ambient RH levels allow individuals to meet their osmotic demands while maintaining a constant energy input.  相似文献   

4.
Ophraella communa, an unintentionally introduced leaf beetle in China, has good control efficiency on ragweed, Ambrosia artemisiifolia. Aspects of the climatic requirements for development, survival, longevity and fecundity of O. communa were studied under the conditions of constant temperature (25 ± 1°C), photoperiod of 14 L:10 D and three relative humidities (60%, 75% and 90% RHs). The results showed that the developmental periods of O. communa at different stages shortened along with the increasing relative humidity, except that of the pupal stage. Although no differences were observed in the pupal survival rate, ovipositional period, fecundity, longevity and adult female age-specific survivorship of O. communa under the three humidity conditions, the survival rates during the egg, larva and entire immature stage were significantly higher at 75% RH and 90% RH than at 60% RH. The innate rate of increase (r m), net reproductive rate (R 0), finite rate of increase (λ) reached the maximum at 75% RH, with values of 0.181, 1116.4 and 1.198, respectively. These results indicated that the optimum relative humidity for the development of O. communa ranged from 75% RH to 90% RH. Thus O. communa prefers moist microclimate habitats. Its population may expand rapidly during mid-May to late August in south, east and central China, when the humidity is relatively high.  相似文献   

5.
Aims: To investigate the effect of glycine betaine (GB) on the survival of Listeria monocytogenes on leaf surfaces under low relative humidity (RH). Methods and Results: The addition of GB (≥25 mmol l?1) improved the survival of L. monocytogenes under low RH on parsley leaves, thus suggesting that GB can improve the tolerance of L. monocytogenes to desiccation. Ten times less GB was needed to improve L. monocytogenes survival under low RH on nonbiological surfaces compared with parsley leaves, suggesting that, on the leaf surface, L. monocytogenes may have to compete for the available GB with autochthonous bacteria and/or the plant itself. Wild type and mutants carrying deletions in the three GB uptake systems, BetL, Gbu and OpuC, behaved similarly with and without added GB on parsley leaves (P > 0·05). In addition, preaccumulation of GB, triggered by osmotic stress prior to inoculation, failed to improve survival under low RH compared with osmotic stress without GB accumulation. Conclusions: Exogenous GB had a protective effect on L. monocytogenes cells from desiccation during survival on parsley leaves. This effect was independent of intracellular GB accumulation by the known uptake systems. Significance and Impact of the Study: Presence of GB could improve the survival of L. monocytogenes to desiccation on leaf surfaces and nonbiological surfaces.  相似文献   

6.
The aim of this study was to determine the prevalence of Listeria sp. and Listeria monocytogenes in soil samples with reference to type of fertilizers (natural and artificial) and distance from places intensively exploited by men, as well as to determine the relationship between the presence of L. monocytogenes in the soil and in fruits and vegetables. The examined 1,000 soil samples originated from 15 different areas, whilst 140 samples of fruits and 210 samples of vegetables were collected from those areas. L. monocytogenes was isolated only from 5.5 % of all soil samples coming exclusively from meadows intensively grazed by cattle (27.8 %) and areas near food processing plants (25 %) and wild animal forests (24 %). Listeria sp. and L. monocytogenes were not present on artificially fertilized areas and wastelands. L. monocytogenes was detected in 10 % of samples of strawberry, 15 % of potato samples, and 5 % of parsley samples. Our data indicate that Listeria spp. and particularly L. monocytogenes were found in the soil from (1) arable lands fertilized with manure, (2) pasture (the land fertilized with feces of domestic animals), and (3) forests (again, the land fertilized with feces of animals, not domestic but wild). The bacteria were not detected in the soil samples collected at (1) artificially fertilized arable lands and (2) wastelands (the lands that were not fertilized with manure or animal feces). Moreover, a correlation was determined in the presence of L. monocytogenes between soil samples and samples of the examined fruits and vegetables.  相似文献   

7.
8.
Water was evaporated from infective Trichostrongylus colubriformis larvae suspended in tap, distilled, and triple-distilled water, and the nematodes were then exposed to 50% and 70% relative humidity (RH) at 20 and 30 C. Sample groups were rehydrated for 4 h daily in similar quality water, observed for motility and counted, then returned to the same RH and temp and re-desiccated. Desiccation and rehydration were repeated until all motility ceased. Longest survival was 30 days at 20 C and 70% RH. In all temp and RH combinations, control (nondesiccated) and desiccated larvae survived longer in distilled or triple-distilled water than in tap water.  相似文献   

9.
BackgroundSevere acute malnutrition (SAM) is a major public health problem affecting children under the age of five in many low- and middle-income countries, and its resolution would contribute towards achieving the several sustainable development goals. The etiology of SAM is pluri-factorial, including delayed maturation of the gut microbiota, suboptimal feeding practices and dysfunctional breastfeeding. The recent serendipitous detection of Listeria monocytogenes in the breast milk of Malian women, in contrast to French women, suggests a possible association with SAM.Methodology/ Principal findingsTo investigate the possible association of L. monocytogenes carriage in breast milk and SAM, a case-control study was performed in Senegal, with subjects recruited from two areas. Using 16S amplicon sequencing, a culture independent method, 100% (152/152) of the mothers were positive for L. monocytogenes in their breast milk while qPCR analysis gave lower recovery rates. Interestingly, after enrichment in Fraser broth and seeding on PALCALM agar, all 10 isolated strains were isolated from the milk of 10 mothers who had SAM children which also had a significantly increased relative abundance of L. monocytogenes (0.34 (SD 0.35) vs 0.05 (SD 0.07) in controls, p<0.0001). The high genomic similarity between these strains and Malian breast milk strains from a previous study supports the hypothesis of endemic clone carriage in West Africa. Moreover, the in vitro growth inhibition of L. monocytogenes using breast milk samples was obtained from only 50% of the milk of mothers who had SAM children, in contrast to control samples which systematically inhibited the growth of L. monocytogenes with a higher inhibition diameter (15.7 mm (SD 2.3) in controls versus 3.5 mm (SD 4.6) in SAM, p = 0.0001). Lactobacillus and Streptococcus isolated from the breast milk of controls inhibit L. monocytogenes in a species-dependent manner.Conclusions/SignificanceOur study reveals a previously unsuspected carriage of L. monocytogenes in the breast milk of West African women, which is associated with SAM. The inhibitory effect of human selected lactic acid bacterial species against L. monocytogenes might provide new therapeutic and inexpensive options to prevent and treat this neglected public health issue.  相似文献   

10.
《Journal of Asia》2020,23(2):606-611
Frankliniella occidentalis (Pergande) is a major insect pest of greenhouse crops such as leaf vegetables, flowers and vegetable fruits worldwide. The life history characteristics of F. occidentalis were investigated at control temperature and humidity (27.3 ± 0.54 °C, 79.9 ± 2.79% RH) (mean ± SD), a 10 °C-range fluctuation in temperature (27.1 ± 5.28 °C, 81.5 ± 4.03% RH), a 20 °C-range fluctuation in temperature (26.5 ± 10.09 °C, 80.4 ± 5.76% RH), a 20%-range fluctuation in humidity (26.8 ± 0.37 °C, 80.7 ± 9.55% RH) and a 30%-range fluctuation in humidity (27.3 ± 0.41 °C, 76.3 ± 15.28% RH). Overall, the life history traits of F. occidentalis were more negatively affected by fluctuating environmental conditions. The impact of temperature fluctuation was more severe than that of humidity fluctuation. Additionally, the degree of impact increased as the fluctuation range of the temperature increased, while the reverse trend was observed with humidity fluctuations. With the 20 °C-range fluctuation in temperature, F. occidentalis died at the 1st instar larval stage. The offspring’s sex ratio was significantly higher at the 20%- and 30%-range fluctuations in humidity (0.47 and 0.49, respectively) compared to the control (0.35) and at the 10 °C-range fluctuation in temperature (0.33). From the fertility life table analysis, the intrinsic rate of increase (r) was higher at the 30%-range fluctuation in humidity and control conditions as 0.218 and 0.205, respectively. At the 10 °C-range fluctuation in temperature conditions, r was significantly lower as 0.169. High fluctuations in temperature and low fluctuations in humidity appear to be the best conditions for controlling F. occidentalis populations in greenhouses.  相似文献   

11.
The aerosol survival in air and in nitrogen was measured for Pasteurella tularensis live vaccine strain, disseminated from the wet and dry states. The results showed that most of the loss of viability occurred in less than 2 min of aerosol age, i.e., a rapid initial decay followed by a much slower secondary decay. In nitrogen and air, minimum survival occurred at 50 to 55% relative humidity (RH) for wet dissemination and at 75% RH for dry dissemination. This shift indicated that aerosols produced by wet and dry dissemination were not equivalent and suggested that survival might not be related to bacterial water activity or content. The results showed that rehydration is the key process with regard to survival, but that lysis on rehydration is not a primary death mechanism. The effects of oxygen were complex because it could be either protective or toxic, depending upon other conditions. The protective action of oxygen was through an effect on the spent culture suspending fluid. The latter contained a toxic component, the activity of which is suppressed by oxygen; possibly the component is pumped away during freeze-drying. A toxic effect of oxygen was not found in the presence of spent culture media because the toxicity of the latter masks such an effect. With other bacterial suspending fluids, oxygen was shown to be toxic at low RH. Similar effects with regard to oxygen toxicity were also found with a laboratory strain of P. tularensis. Differences in oxygen toxicity for aerosols generated from the wet and dry states also suggest that bacterial water content and activity do not control aerosol survival.  相似文献   

12.
Listeria monocytogenes is an opportunistic Gram-positive bacterial pathogen responsible for listeriosis, a human foodborne disease. Its cell wall is densely decorated with wall teichoic acids (WTAs), a class of anionic glycopolymers that play key roles in bacterial physiology, including protection against the activity of antimicrobial peptides (AMPs). In other Gram-positive pathogens, WTA modification by amine-containing groups such as D-alanine was largely correlated with resistance to AMPs. However, in L. monocytogenes, where WTA modification is achieved solely via glycosylation, WTA-associated mechanisms of AMP resistance were unknown. Here, we show that the L-rhamnosylation of L. monocytogenes WTAs relies not only on the rmlACBD locus, which encodes the biosynthetic pathway for L-rhamnose, but also on rmlT encoding a putative rhamnosyltransferase. We demonstrate that this WTA tailoring mechanism promotes resistance to AMPs, unveiling a novel link between WTA glycosylation and bacterial resistance to host defense peptides. Using in vitro binding assays, fluorescence-based techniques and electron microscopy, we show that the presence of L-rhamnosylated WTAs at the surface of L. monocytogenes delays the crossing of the cell wall by AMPs and postpones their contact with the listerial membrane. We propose that WTA L-rhamnosylation promotes L. monocytogenes survival by decreasing the cell wall permeability to AMPs, thus hindering their access and detrimental interaction with the plasma membrane. Strikingly, we reveal a key contribution of WTA L-rhamnosylation for L. monocytogenes virulence in a mouse model of infection.  相似文献   

13.
Multiple Listeria monocytogenes strains can be present in the same food sample; moreover, infection with more than one L. monocytogenes strain can also occur. In this study we investigated the impact of strain competition on the growth and in vitro virulence potential of L. monocytogenes. We identified two strong competitor strains, whose growth was not (or only slightly) influenced by the presence of other strains and two weak competitor strains, which were outcompeted by other strains. Cell contact was essential for growth inhibition. In vitro virulence assays using human intestinal epithelial Caco2 cells showed a correlation between the invasion efficiency and growth inhibition: the strong growth competitor strains showed high invasiveness. Moreover, invasion efficiency of the highly invasive strain was further increased in certain combinations by the presence of a low invasive strain. In all tested combinations, the less invasive strain was outcompeted by the higher invasive strain. Studying the effect of cell contact on in vitro virulence competition revealed a complex pattern in which the observed effects depended only partially on cell-contact suggesting that competition occurs at two different levels: i) during co-cultivation prior to infection, which might influence the expression of virulence factors, and ii) during infection, when bacterial cells compete for the host cell. In conclusion, we show that growth of L. monocytogenes can be inhibited by strains of the same species leading potentially to biased recovery during enrichment procedures. Furthermore, the presence of more than one L. monocytogenes strain in food can lead to increased infection rates due to synergistic effects on the virulence potential.  相似文献   

14.
Abstract The effects of relative humidity (RH) on cocoon formation and survival in the braconid parasitoid wasp Cotesia glomerata (L.) (Hymenoptera: Braconidae) are investigated under various humidity conditions (50, 75, 90, 95 and 100% RH) at 20 °C and under an LD 16 : 8 h photoperiod. The mortality rate at the time of egression from hosts under 100% RH is significantly higher than for other RHs. Cocoon clusters formed at 100% RH spread significantly more than those formed at 50, 75, or 90% RH. Developmental periods differ significantly among RHs under which wasps developed. The mean period from the egression from hosts to adult emergence is 8.7 days when developed at 50–95% RHs, and 8.0 days at 100% RH. The emergence rates of C. glomerata that are maintained under the same humidity conditions after egression from hosts are not significantly different among RHs. However, emergence rates from cocoons that are transferred from 100% RH to 50 and 75% RH are < 70%, although the rates are > 90% in most cases. Some wasps do not emerge from cocoons: more than 60% die after adult eclosion at all RHs; the relative frequency of adult deaths is approximately 90% at 50% RH. Relative humidity influences the cluster and cocoon status strongly: both good clusters and cocoons are formed at low RHs. Emergence rates from cocoons of different ranks are significantly different: the rates of low‐rank cocoons are low at low RHs. The survival of C. glomerata is affected strongly by RH through cocoon formation.  相似文献   

15.
The aim of this study was to establish which of seven factors influence the adhesion strength and hence bacterial transfer between biofilms containing Listeria monocytogenes (pure and two-species biofilms) and tryptone soya agar (TSA) as a solid organic surface. The two-species biofilms were made of L. monocytogenes and one of the following species of bacteria: the nonpathogenic organisms Kocuria varians, Pseudomonas fluorescens, and Staphylococcus sciuri and CCL 63, an unidentified gram-negative bacterium isolated from the processing plant environment. We used biofilms prepared under conditions simulating open surfaces in meat-processing sites. The biofilm's adhesion strength and population were evaluated by making 12 contacts on a given whole biofilm (4.5 cm2), using a new slice of a sterilized TSA cylinder for each contact, and plotting the logarithm CFU · cm−2 detached by each contact against the contact number. Three types of detachment kinetics were observed: biphasic kinetics, where the first slope may be either positive or negative, and monophasic kinetics. The bacteria that resisted a chlorinated alkaline product and a glutaraldehyde- and quaternary ammonium-based disinfectant had greater adhesion strengths than those determined for untreated biofilms. One of the four non-Listeria strains studied, Kocuria varians CCL 56, favored both the attachment and detachment of L. monocytogenes. The stainless steel had smaller bacterial populations than polymer materials, and non-Listeria bacteria adhered to it less strongly. Our results helped to evaluate measures aimed at controlling the immediate risk, linked to the presence of a large number of CFU in a foodstuff, and the delayed risk, linked to the persistence of L. monocytogenes and the occurrence of slightly contaminated foods that may become dangerous if L. monocytogenes multiplies during storage. Cleaning and disinfection reduce the immediate risk, while reducing the delayed risk should be achieved by lowering the adhesion strength, which the sanitizers used here cannot do at low concentrations.  相似文献   

16.
单增李斯特菌是一种重要的人兽共患食源性胞内致病菌,广泛存在于自然环境中且易污染动物性食品,人及动物感染后可引起严重的李斯特菌病,死亡率高达30%。单增李斯特菌通常对多种药物敏感,然而,因不合理使用抗菌药或消毒剂形成的选择压力导致李斯特菌多重耐药情况的报道日渐增多。外排泵蛋白是细菌中一类重要的蛋白,可参与机体多种生物学过程,包括影响细菌对抗生素敏感性、促进有毒化合物泵出、影响细菌毒力等。本文综述了近年来关于单增李斯特菌耐药外排泵的功能及调控机制的研究进展,为深入理解李斯特菌耐药等环境适应机制及有效控制该病原污染传播和筛选抗感染药物新靶点提供理论基础。  相似文献   

17.
【背景】2019年底新型冠状病毒肺炎(corona virus disease 2019,COVID-19)疫情的流行给食品安全带来了挑战。【目的】评估后疫情时代市售生鲜猪肉中单增李斯特菌(Listeria monocytogenes)的污染情况。【方法】选取2020-2021年疫情期间不同地点、不同包装方式、不同季度的生鲜猪肉,分析单增李斯特菌的污染率和污染水平,并对分离菌株的流行病学特征进行分析。【结果】生鲜猪肉中单增李斯特菌的污染率为15.28%(77/504),其中猪肉直营店和农贸市场的污染率高于超市。不同包装方式中,预包装和简易包装的污染率高于散装样品,并且不同季度的污染率存在显著性差异,第三季度污染率最高,为27.78%。定量结果发现,40.26%超过10 MPN/g(MPN:most probable number),其中有3个样品的污染水平超过100MPN/g。血清型分析结果发现,1/2a-3a (48.05%)和1/2c-3c (44.16%)为主要血清型。耐药性试验结果表明,19.50%的分离株存在多重耐药,有2株(2.60%)对所有抗生素都敏感,68株(88.30...  相似文献   

18.
Low-pressure mercury UV (LP-UV) lamps have long been used for bacterial inactivation, but due to certain disadvantages, such as the possibility of mercury leakage, deep-UV-C light-emitting diodes (DUV-LEDs) for disinfection have recently been of great interest as an alternative. Therefore, in this study, we examined the basic spectral properties of DUV-LEDs and the effects of UV-C irradiation for inactivating foodborne pathogens, including Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes, on solid media, as well as in water. As the temperature increased, DUV-LED light intensity decreased slightly, whereas LP-UV lamps showed increasing intensity until they reached a peak at around 30°C. As the irradiation dosage and temperature increased, E. coli O157:H7 and S. Typhimurium experienced 5- to 6-log-unit reductions. L. monocytogenes was reduced by over 5 log units at a dose of 1.67 mJ/cm2. At 90% relative humidity (RH), only E. coli O157:H7 experienced inactivation significantly greater than at 30 and 60% RH. In a water treatment study involving a continuous system, 6.38-, 5.81-, and 3.47-log-unit reductions were achieved in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively, at 0.5 liter per minute (LPM) and 200 mW output power. The results of this study suggest that the use of DUV-LEDs may compensate for the drawbacks of using LP-UV lamps to inactivate foodborne pathogens.  相似文献   

19.
Zinc (Zn) is the second most abundant transition metal after iron. It plays a vital role in living organisms and affects multiple aspects of the immune system. All-trans retinoic acid (atRA) is an isomeric form of the vitamin A or retinol. It possesses the greatest biological activity of Vitamin A. Vitamin A and related retinoids influence many aspects of immunity. In this study, we demonstrated that treatment with a combination of Zn and atRA contributes to host resistance against infection by Listeria monocytogenes. Pretreatment with Zn and atRA enhanced resistance against L. monocytogenes infection in mice and treatment with both Zn and atRA showed a higher protective effect than treatment with either alone. Supplementation with Zn, atRA or their combination decreased the number of L. monocytogenes present in target organs. In vitro, supplementation increased the bacterial uptake by macrophage cells and reduced the replication of L. monocytogenes. Our results suggest that the combination of Zn and atRA has a great bacteriostatic impact on L. monocytogenes and its infection.  相似文献   

20.
Listeriosis is a rare, serious, and mainly food-borne infection caused by the bacterium Listeria monocytogenes. This food-borne infection primarily affects pregnant women and immunologically compromised individuals. L. monocytogenes is recognized as a problem for the food industry, mainly due to its environmental persistence, attributed in part to its ability to form biofilms. Biofilms are microbial communities adhered to biotic or abiotic surfaces coated by self-produced extracellular polymers. These structures confer protection to bacterial cells and decrease the efficiency of cleaning and disinfection procedures. This article presents a brief review of current perspectives on the formation of biofilms, with emphasis on L. monocytogenes, highlighting the importance of cell-to-cell communication and structural composition of the microbial communities. The techniques currently used to study biofilms and the need to develop new strategies for the prevention and control of biofilm-forming pathogens are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号