首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.  相似文献   

2.
Infections caused by antibiotic-resistant bacteria have become more prevalent during past decades. Yet, it is unknown whether such infections occur in addition to infections with antibiotic-susceptible bacteria, thereby increasing the incidence of infections, or whether they replace such infections, leaving the total incidence unaffected. Observational longitudinal studies cannot separate both mechanisms. Using plasmid-based beta-lactam resistant E. coli as example we applied mathematical modelling to investigate whether seven biological mechanisms would lead to replacement or addition of infections. We use a mathematical neutral null model of individuals colonized with susceptible and/or resistant E. coli, with two mechanisms implying a fitness cost, i.e., increased clearance and decreased growth of resistant strains, and five mechanisms benefitting resistance, i.e., 1) increased virulence, 2) increased transmission, 3) decreased clearance of resistant strains, 4) increased rate of horizontal plasmid transfer, and 5) increased clearance of susceptible E. coli due to antibiotics. Each mechanism is modelled separately to estimate addition to or replacement of antibiotic-susceptible infections. Fitness costs cause resistant strains to die out if other strain characteristics are maintained equal. Under the assumptions tested, increased virulence is the only mechanism that increases the total number of infections. Other benefits of resistance lead to replacement of susceptible infections without changing the total number of infections. As there is no biological evidence that plasmid-based beta-lactam resistance increases virulence, these findings suggest that the burden of disease is determined by attributable effects of resistance rather than by an increase in the number of infections.  相似文献   

3.
Seabirds may be responsible for the spread of pathogenic/resistant organisms over great distances, playing a relevant role within the context of the One World, One Health concept. Diarrheagenic E. coli strains, known as STEC (shiga toxin-producing E. coli), and the extraintestinal pathogenic E. coli (ExPEC and the subpathotype APEC), are among the E. coli pathotypes with zoonotic potential associated with the birds. In order to identify health threats carried by frigates and to evaluate the anthropic influence on the southern coast of Brazil, the aim of this work was to characterize E. coli isolated from free-ranging frigates in relation to virulence genotypes, serotypes, phylogenetic groups and antimicrobial resistance. Cloacal and choanal swabs were sampled from 38 Fregata magnificens from two oceanic islands and one rescue center. Forty-three E. coli strains were recovered from 33 out of the 38 birds (86.8%); 88.4% of strains showed some of the virulence genes (VGs) searched, 48.8% contained three or more VGs. None of the strains presented VGs related to EPEC/STEC. Some of the isolates showed virulence genotypes, phylogenetic groups and serotypes of classical human ExPEC or APEC (O2:H7, O1:H6, ONT:H7, O25:H4). Regarding antimicrobial susceptibility, 62.8% showed resistance, and 11.6% (5/43) were multidrug-resistant. The E. coli present in the intestines of the frigates may reflect the environmental human impact on southeast coast of Brazil; they may also represent an unexplored threat for seabird species, especially considering the overlap of pathogenic potential and antimicrobial resistance present in these strains.  相似文献   

4.
致病性大肠杆菌包括肠致病性大肠杆菌(intestinal pathogenic Escherichia coli, IPEC)和肠外致病性大肠杆菌(extraintestinalpathogenicE.coli,ExPEC),可引起人和动物多种感染性疾病。ExPEC主要在肠道外其他组织脏器定殖并导致感染,包括尿道致病性大肠杆菌(uropathogenicE.coli, UPEC)、新生儿脑膜炎大肠杆菌(newborn meningitis E. coli, NMEC)和禽致病性大肠杆菌(avian pathogenic E. coli, APEC)。人源ExPEC (UPEC和NMEC)主要引起人尿道感染、肾盂肾炎和新生儿脑膜炎,而APEC可导致禽类的大肠杆菌病,造成家禽业的巨大经济损失。另外,乳腺致病性大肠杆菌(mammary pathogenic E. coli, MPEC)和猪源ExPEC可导致奶牛乳房炎、猪的肺炎及急性败血症等病症。研究发现,ExPEC类菌株在基因组结构上很相似,与IPEC本质区别在于致病机制不同,ExPEC具有很多相同的毒力基因和耐药基因,而且动物源ExPEC...  相似文献   

5.

Background

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.

Methods

The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.

Results

The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.

Conclusions

This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.  相似文献   

6.
We investigated time trends in extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from different patient settings in The Netherlands from 2008–2012. E. coli and K. pneumoniae isolates from blood and urine samples of patients > = 18 years were selected from the Dutch Infectious Disease Surveillance System-Antimicrobial Resistance (ISIS-AR) database. We used multivariable Poisson regression to study the rate per year of blood stream infections by susceptible and resistant isolates, and generalized estimating equation (GEE) log-binomial regression for trends in the proportion of extended-spectrum cephalosporin-resistant isolates. Susceptibility data of 197,513 E. coli and 38,244 K. pneumoniae isolates were included. The proportion of extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates from urine and blood samples increased in all patient settings, except for K. pneumoniae isolates from patients admitted to intensive care units. For K. pneumoniae, there was a different time trend between various patient groups (p<0.01), with a significantly higher increase in extended-spectrum cephalosporin-resistant isolates from patients attending a general practitioner than in isolates from hospitalized patients. For E. coli, the increasing time trends did not differ among different patient groups. This nationwide study shows a general increase in extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae isolates. However, differences in trends between E. coli en K. pneumoniae underline the importance of E. coli as a community-pathogen and its subsequent influence on hospital resistance level, while for K. pneumoniae the level of resistance within the hospital seems less influenced by the resistance trends in the community.  相似文献   

7.
Escherichia coli is one of the most common pathogens in nosocomial and community-acquired infections in humans. Fosfomycin is a broad-spectrum antibiotic which inhibits peptidoglycan synthesis responsible for bacterial cell wall formation. Although low, the exact E. coli susceptibility to fosfomycin as well as the mechanisms of resistance in the population from Mainland China are mostly unknown. 1109 non-duplicate clinical E. coli strains isolated from urine, sputum, blood and pus samples in 20 widely dispersed tertiary hospitals from Mainland China were collected from July 2009 to June 2010, followed by determination of minimum inhibitory concentrations of fosfomycin. Detection of the murA, glpT, uhpT, fosA, fosA 3 and fosC genes was performed in fosfomycin non-susceptible E. coli strains and conjugation experiments were employed to determine the mobility of fosA 3 gene. In this study, 7.8% (86/1109) E. coli strains were fosfomycin non-susceptible. Amino acid substitutions in GlpT and MurA were found in six and four E.coli strains, respectively, while the uhpT gene was absent in eighteen E.coli strains. Twenty-nine isolates carried the transferable plasmid with the fosA 3 gene at high frequencies of around 10−6 to 10−7 per donor cell in broth mating. The majority of isolates were susceptible to fosfomycin, showing that the drug is still viable in clinical applications. Also, the main mechanism of E. coli resistance in Mainland China was found to be due to the presence of the fosA 3 gene.  相似文献   

8.
The population structure, virulence, and antimicrobial resistance of uropathogenic E. coli (UPEC) from cats are rarely characterized. The aim of this study was to compare and characterize the UPEC isolated from cats in four geographic regions of USA in terms of their multilocus sequence typing (MLST), virulence profiles, clinical signs, antimicrobial resistance and phylogenetic grouping. The results showed that a total of 74 E. coli isolates were typed to 40 sequence types with 10 being novel. The most frequent phylogenetic group was B2 (n = 57). The most frequent sequence types were ST73 (n = 12) and ST83 (n = 6), ST73 was represented by four multidrug resistant (MDR) and eight non-multidrug resistant (SDR) isolates, and ST83 were significantly more likely to exhibit no drug resistant (NDR) isolates carrying the highest number of virulence genes. Additionally, MDR isolates were more diverse, and followed by SDR and NDR isolates in regards to the distribution of the STs. afa/draBC was the most prevalent among the 29 virulence-associated genes. Linking virulence profile and antimicrobial resistance, the majority of virulence-associated genes tested were more prevalent in NDR isolates, and followed by SDR and MDR isolates. Twenty (50%) MLST types in this study have previously been associated with human isolates, suggesting that these STs are potentially zoonotic. Our data enhanced the understanding of E. coli population structure and virulence association from cats. The diverse and various combinations of virulence-associated genes implied that the infection control may be challenging.  相似文献   

9.
Avian pathogenic Escherichia coli (APEC) are the major cause of colibacillosis in poultry production. In this study, a total of 22 E. coli isolated from colibacillosis field cases and 10 avian faecal E. coli (AFEC) were analysed. All strains were characterised phenotypically by susceptibility testing and molecular typing methods such as pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The presence of 29 virulence genes associated to APEC and human extraintestinal pathogenic E. coli (ExPEC) was also evaluated. For cephalosporin resistant isolates, cephalosporin resistance genes, plasmid location and replicon typing was assessed. Avian isolates belonged to 26 O:H serotypes and 24 sequence types. Out of 22 APEC isolates, 91% contained the virulence genes predictors of APEC; iutA, hlyF, iss, iroN and ompT. Of all strains, 34% were considered ExPEC. PFGE analysis demonstrated a high degree of genetic polymorphism. All strains were multi-resistant, including those isolated from healthy animals. Eleven strains were resistant to cephalosporins; six contained bla CTX-M-14, two bla SHV-12, two bla CMY-2 and one bla SHV-2. Two strains harboured qnrA, and two qnrA together with aac(6’)-Ib-cr. Additionally, the emergent clone O25b:H4-B2-ST131 was isolated from a healthy animal which harboured bla CMY-2 and qnrS genes. Cephalosporin resistant genes were mainly associated to the presence of IncK replicons. This study demonstrates a very diverse population of multi-drug resistant E. coli containing a high number of virulent genes. The E. coli population among broilers is a reservoir of resistance and virulence-associated genes that could be transmitted into the community through the food chain. More epidemiological studies are necessary to identify clonal groups and resistance mechanisms with potential relevance to public health.  相似文献   

10.
Although Escherichia coli typically colonizes the intestinal tract and vagina of giant pandas, it has caused enteric and systemic disease in giant pandas and greatly impacts the health and survival of this endangered species. In order to understand the distribution and characteristics of E. coli from giant pandas, 67 fecal and 30 vaginal E. coli isolates from 21 giant pandas were characterized for O serogroups, phylogenetic groups, antimicrobial susceptibilities, and pulsed-field gel electrophoresis (PFGE) profiles. In addition, these isolates were tested for the presence of extraintestinal pathogenic E. coli (ExPEC) and diarrheagenic E. coli (DEC) by multiplex PCR detection of specific virulence genes. The most prevalent serogroups for all E. coli isolates were O88, O18, O167, O4, and O158. ExPEC isolates were detected mostly in vaginal samples, and DEC isolates were detected only in fecal samples. Phylogenetic group B1 predominated in fecal isolates, while groups B2 and D were frequently detected in vaginal isolates. Resistance to trimethoprim-sulfamethoxazole was most frequently observed, followed by resistance to nalidixic acid and tetracycline. All except five isolates were typeable by using XbaI and were categorized into 74 PFGE patterns. Our findings indicate that panda E. coli isolates exhibited antimicrobial resistance, and potentially pathogenic E. coli isolates were present in giant pandas. In addition, these E. coli isolates were genetically diverse. This study may provide helpful information for developing strategies in the future to control E. coli infections of giant pandas.  相似文献   

11.
A large outbreak of gastrointestinal disease occurred in 2011 in Germany which resulted in almost 4000 patients with acute gastroenteritis or hemorrhagic colitis, 855 cases of a hemolytic uremic syndrome and 53 deaths. The pathogen was an uncommon, multiresistant Escherichia coli strain of serotype O104:H4 which expressed a Shiga toxin characteristic of enterohemorrhagic E. coli and in addition virulence factors common to enteroaggregative E. coli. During post-epidemic surveillance of Shiga toxin-producing E. coli (STEC) all but two of O104:H4 isolates were indistinguishable from the epidemic strain. Here we describe two novel STEC O104:H4 strains isolated in close spatiotemporal proximity to the outbreak which show a virulence gene panel, a Shiga toxin-mediated cytotoxicity towards Vero cells and aggregative adherence to Hep-2 cells comparable to the outbreak strain. They differ however both from the epidemic strain and from each other, by their antibiotic resistance phenotypes and some other features as determined by routine epidemiological subtyping methods. Whole genome sequencing of these two strains, of ten outbreak strain isolates originating from different time points of the outbreak and of one historical sporadic EHEC O104:H4 isolate was performed. Sequence analysis revealed a clear phylogenetic distance between the two variant strains and the outbreak strain finally identifying them as epidemiologically unrelated isolates from sporadic cases. These findings add to the knowledge about this emerging pathogen, illustrating a certain diversity within the bacterial core genome as well as loss and gain of accessory elements. Our results do also support the view that distinct new variants of STEC O104:H4 repeatedly might originate from yet unknown reservoirs, rather than that there would be a continuous diversification of a single epidemic strain established and circulating in Germany after the large outbreak in 2011.  相似文献   

12.
Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.  相似文献   

13.
The purpose of this study was to survey antibacterial resistance in outpatients of Chinese county hospitals. A total of 31 county hospitals were selected and samples continuously collected from August 2010 to August 2011. Drug sensitivity testing was conducted in a central laboratory. A total of 2946 unique isolates were collected, including 634 strains of Escherichia coli, 606 Klebsiella pneumoniae, 476 Staphylococcus aureus, 308 Streptococcus pneumoniae, and 160 Haemophilus influenzae. Extended-spectrum β-lactamases were detected in E. coli (42.3% strains), K. pneumoniae (31.7%), and Proteus mirabilis (39.0%). Ciprofloxacin-resistance was detected in 51.0% of E. coli strains. Salmonella spp. and Shigella spp. were sensitive to most antibacterial agents. Less than 8.0% of Pseudomonas aeruginosa isolates were resistant to carbapenem. For S. aureus strains, 15.3% were resistant to methicillin, and some strains of S. pneumoniae showed resistance to penicillin (1.6%), ceftriaxone (13.0%), and erythromycin (96.4%). β-lactamase was produced by 96.5% of Moraxella catarrhalis strains, and 36.2% of H. influenzae isolates were resistant to ampicillin. Azithromycin-resistant H. influenzae, imipenem-resistant but meropenem-sensitive Proteus, and ceftriaxone- and carbapenem non-sensitive M. catarrhalis were recorded. In conclusion, cephalosporin- and quinolone-resistant strains of E. coli and Klebsiella pneumonia and macrolide-resistant Gram-positive cocci were relatively prominent in county hospitals. The antibacterial resistance profiles of isolates from different geographical locations varied significantly, with proportions in county hospitals lower than those in their tertiary counterparts in the central cities, although the difference is diminishing.  相似文献   

14.
Methicillin resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen found in hospital and community environments that can cause serious infections. A major barrier to genetic manipulations of clinical isolates has been the considerable difficulty in transforming these strains with foreign plasmids, such as those from E. coli, in part due to the type I and IV Restriction Modification (R-M) barriers. Here we combine a Plasmid Artificial Modification (PAM) system with DC10B E. coli cells (dcm mutants) to bypass the barriers of both type I and IV R-M of S. aureus, thus allowing E. coli plasmid DNA to be transformed directly into clinical MRSA strains MW2, N315 and LAC, representing three of the most common clonal complexes. Successful transformation of clinical S. aureus isolates with E. coli-derived plasmids should greatly increase the ability to genetically modify relevant S. aureus strains and advance our understanding of S. aureus pathogenesis.  相似文献   

15.
Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development.  相似文献   

16.
Multidrug-resistant Escherichia coli is one of the most important public health concern worldwide that can be transferred through the food of animal origin to human being causing serious infection. The genetic responsibility of such resistant genes (Plasmids, integrons, and transposons) can be easily transmitted from the resistant strain to another. Therefore, the main objectives of the study is the molecular characterization of the resistant Escherichia coli isolates recovered from food samples and human isolates collected from outpatient clinics, KSA especially the resistance strains against aminoglycoside resistance genes which are responsible for the resistance against gentamicin and the resistance caused β-lactamases genes. Examination of food samples revealed 120 Escherichia coli isolates (22.22%) (30 strains O26: K60, 28 strains O128: K67, 20 strains O111: K58, 18 strains O126: K58, 10 strains O55: K59, 9 strains O86: K61 and 5 strains O157: H7). All the strains were highly resistance to penicillin, amoxicillin-clavulanic and erythromycin with a percentage of 100%, while the resistance to gentamicin, ampicillin, oxytetracycline, chloramphenicol, norfloxacin, trimethoprim, and nalidixic acid were 83%, 75%, 65.3%, 55.8%, 36.5%, 30.7% and 26.9% respectively. On the other hand, 59.6% of tested strains were sensitive to ciprofloxacin. Positive amplification of 896?bp fragments specific for aacC2 genes were observed by PCR designated for the detection of the aminoglycoside resistance genes. Meanwhile, multiplex PCR designed to detect the ampicillin and amoxicillin-clavulanic acid resistant E. coli isolates revealed positive amplification of 516?bp fragments specific for BlaTEM gene with all the resistant strains to ampicillin and amoxicillin-clavulanic acid. Moreover, positive amplification of 392?bp fragments specific for BlaSHV resistant gene were observed with (60.52%) of E. coli isolate. While all the tested strains were negative for amplification of BlaOXA_1.  相似文献   

17.
Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.  相似文献   

18.
While much evidence supports the view that the total consumption of antimicrobials is the critical factor in selecting resistance, the possibility of resistant isolates and/or genes encoding resistance being transferred among different living communities has raised serious concerns. In the present study, Escherichia coli isolates recovered from faecal samples (n?=?34) of Iberian wolves (Canis lupus signatus) were characterized for their antimicrobial drug susceptibility. Nearly two thirds of the isolates carried resistance to one or more antimicrobial drugs (in a panel of 19 antibiotics), and resistance to tetracycline, ampicillin and streptomycin was most widespread. By screening a set of 20 multidrug-resistant E. coli for virulence genes, we found strains positive for cdt, chuA, cvaC, eaeA, paa and bfpA, which was the most common virulence trait. Phylogenetic analyses have shown that the majority of these E. coli strains fall into phylogenetic groups A and B1. In this study, the diversity of extended-spectrum β-lactamase-producing strains was expressed by both polymorphism of the pulsed-field gel electrophoresis patterns and the presence of various resistance and virulence genes profiles. Finding the specific implications of these multi-resistant bacteria (hosting several virulence factors) in wolf conservation is a challenging topic to be addressed in further investigations.  相似文献   

19.
Cattle are the primary reservoir of the foodborne pathogen Escherichia coli O157:H7, with the concentration and frequency of E. coli O157:H7 shedding varying substantially among individual hosts. The term ‘‘super-shedder” has been applied to cattle that shed ≥104 cfu E. coli O157:H7/g of feces. Super-shedders have been reported to be responsible for the majority of E. coli O157:H7 shed into the environment. The objective of this study was to determine if there are phenotypic and/or genotypic differences between E. coli O157:H7 isolates obtained from super-shedder compared to low-shedder cattle. From a total of 784 isolates, four were selected from low-shedder steers and six isolates from super-shedder steers (4.01–8.45 log cfu/g feces) for whole genome sequencing. Isolates were phage and clade typed, screened for substrate utilization, pH sensitivity, virulence gene profiles and Stx bacteriophage insertion (SBI) sites. A range of 89–2473 total single nucleotide polymorphisms (SNPs) were identified when sequenced strains were compared to E. coli O157:H7 strain Sakai. More non-synonymous SNP mutations were observed in low-shedder isolates. Pan-genomic and SNPs comparisons did not identify genetic segregation between super-shedder or low-shedder isolates. All super-shedder isolates and 3 of 4 of low-shedder isolates were typed as phage type 14a, SBI cluster 3 and SNP clade 2. Super-shedder isolates displayed increased utilization of galactitol, thymidine and 3-O-β-D-galactopyranosyl-D-arabinose when compared to low-shedder isolates, but no differences in SNPs were observed in genes encoding for proteins involved in the metabolism of these substrates. While genetic traits specific to super-shedder isolates were not identified in this study, differences in the level of gene expression or genes of unknown function may still contribute to some strains of E. coli O157:H7 reaching high densities within bovine feces.  相似文献   

20.
Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号