首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
1. The fetal brain develops within its own environment, which is protected from free exchange of most molecules among its extracellular fluid, blood plasma, and cerebrospinal fluid (CSF) by a set of mechanisms described collectively as brain barriers.2. There are high concentrations of proteins in fetal CSF, which are due not to immaturity of the blood–CSF barrier (tight junctions between the epithelial cells of the choroid plexus), but to a specialized transcellular mechanism that specifically transfers some proteins across choroid plexus epithelial cells in the immature brain.3. The proteins in CSF are excluded from the extracellular fluid of the immature brain by the presence of barriers at the CSF–brain interfaces on the inner and outer surfaces of the immature brain. These barriers are not present in the adult.4. Some plasma proteins are present within the cells of the developing brain. Their presence may be explained by a combination of specific uptake from the CSF and synthesis in situ. 5. Information about the composition of the CSF (electrolytes as well as proteins) in the developing brain is of importance for the culture conditions used for experiments with fetal brain tissue in vitro, as neurons in the developing brain are exposed to relatively high concentrations of proteins only when they have cell surface membrane contact with CSF.6. The developmental importance of high protein concentrations in CSF of the immature brain is not understood but may be involved in providing the physical force (colloid osmotic pressure) for expansion of the cerebral ventricles during brain development, as well as possibly having nutritive and specific cell development functions.  相似文献   

3.
Manifestations of functional asymmetry of human cerebral cortex at spatial orientation in the visual and auditory systems are considered. Disorder of the right hemisphere activity leads to two main interrelated disorders: ignoring of a portion of the extrapersonal space on the left and compression of this space on the right. The revealed disorders are considered as a result of suppression of activity of brain structures (first of all, of the parietal area of the right cortex) that form body scheme (the reference level at the spatial orientation). The suggestion is made about causes of ignoring of the external sensory space in disturbances of the right parietal cortex area. Role of the right hemisphere in other possible forms of ignoring of the external space is considered.  相似文献   

4.
5.
6.
7.
8.
Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases.  相似文献   

9.
10.
11.
12.
Malonate, Malonyl-Coenzyme A, and Acetyl-Coenzyme A in Developing Rat Brain   总被引:2,自引:2,他引:0  
Abstract: Free malonate, malonyl-coenzyme A (malonyl-CoA), and acetyl-CoA were assayed in rat brain at developmental ages from the 20th day of gestation to 60 days of postnatal life. The determination of malonate was based on its conversion to malonyl-CoA and decarboxylation to acetyl-CoA by enzyme extracts from Pseudo-monas fluorescens. The resulting acetyl-CoA reacted with [4-14C]oxaloacetate to form [5-14C]citrate, which was isolated by TLC. Malonyl-CoA in perchloric acid extracts from brain was converted to acetyl-CoA by rat liver mitochondrial malonyl-CoA decarboxylase (EC 4.1.1.9). Acetyl-CoA derived from this step was assayed by a modified CoA-cycling procedure. Brain acetyl-CoA was also assayed by CoA cycling. Prenatal brain contained no free malonate but malonyl-CoA was present. The acetyl-CoA level was relatively high just prior to birth and declined slightly with growth. Malonate concentrations after birth rose rapidly to reach 192 nmol/g wet weight at 60 days. Adult levels for malonyl-CoA and acetyl-CoA were 1.83 and 1.90 nmol/g wet weight, respectively. The origin and natural role of free malonate in brain are not known but deacylation of malonyl-CoA by reversal of the malonyl-CoA synthetase reaction is postulated. Rat liver and kidney also contain substantial concentrations of free malonate.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
BackgroundLymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood.Conclusion/SignificanceThese changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号