首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.  相似文献   

3.
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm''s nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni.  相似文献   

4.
TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca2+ and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.  相似文献   

5.
The association of serotonin with the alimentary canal of Locusta migratoria was investigated using immunohistochemistry and high performance liquid chromatography (HPLC) coupled to electrochemical detection. Serotonin-like immunoreactive processes were differentially distributed between and within three regions of the alimentary canal; the foregut, midgut and hindgut. The midgut possessed the most serotonin-like immunoreactive processes, while the hindgut contained only a few immunoreactive processes. Using HPLC coupled to electrochemical detection the serotonin content was highest in the midgut followed by the foregut and hindgut. The physiological response of the midgut to serotonin as well as to the combination of serotonin and proctolin was also examined. It was found that the application of serotonin to the midgut leads to a dose-dependent reduction in tonus of the circular muscles. Serotonin was also able to inhibit a proctolin-induced contraction of the midgut in a dose-dependent manner. The physiological and pharmacological properties of serotonin agonists and antagonists on the midgut were also investigated. The results indicate that alpha-methyl 5-HT was the most effective agonist leading to a 108% relaxation at 10(-9) M compared to that caused by the same serotonin concentration. Among several serotonin receptor antagonists tested, mianserin was the most potent. The application of mianserin at 10(-5) M in combination with 5x10(-6) M serotonin resulted in a 66% reduction of the serotonin-induced relaxation of midgut muscle. The serotonin antagonist cyproheptadine was less effective leading to a 39% reduction of the 5x10(-6) M serotonin-induced relaxation. Ketanserin was a weak antagonist.  相似文献   

6.
Serotonin1A receptor agonists, 8-hydroxy-2-(di-n-propylamino)tetralin and 10-methyl-11-hydroxyaporphine, inhibited electrical stimulation-induced contraction of the guinea-pig ileum. These agonists also inhibited the pressor and tachycardiac responses to low frequency (0.25 Hz) but not to high frequency (2.0 Hz) electrical stimulation of the sympathetic nervous system in pithed rats. Serotonin1B receptor agonist RU 24969 inhibited pressor and tachycardiac responses to both low and high frequencies of stimulation in pithed rats. In the cat nictitating membrane, serotonin1A receptor agonists did not alter contractions elicited by electrical stimulation (0.1-3.0 Hz). Serotonin not only contracted the cat nictitating membrane but also facilitated contractile responses to low frequency (0.1-1.0 Hz) stimulation. The contractile effect of serotonin in the cat nictitating membrane was blunted by bretylium, methysergide, and ketanserin, but not by metoclopramide. The facilitatory effect of serotonin was antagonized by methysergide, but not by ketanserin, pindolol, propranolol, or metoclopramide. These results suggest that serotonin1A receptors modulate autonomic neurotransmission in the guinea-pig ileum and pithed rats, but not in the cat nictitating membrane. Serotonin contracts the cat nictitating mebrane via serotonin2 subtypes, while facilitating stimulated contractile responses through the serotonin1-like receptors.  相似文献   

7.
Recent advances in peripheral taste physiology now suggest that the classic linear view of information processing within the taste bud is inadequate and that paracrine processing, although undemonstrated, may be an essential feature of peripheral gustatory transduction. Taste receptor cells (TRCs) express multiple neurotransmitters of unknown function that could potentially participate in a paracrine role. Serotonin is expressed in a subset of TRCs with afferent synapses; additionally, TRCs respond physiologically to serotonin. This study explored the expression and cellular localization of serotonin receptor subtypes in TRCs as a possible route of paracrine communication. RT-PCR was performed on RNA extracted from rat posterior taste buds with 14 prime sets representing 5-HT(1) through 5-HT(7) receptor subtype families. Data suggest that 5-HT(1A) and 5-HT(3) receptors are expressed in taste buds. Immunocytochemistry with a 5-HT(1A)-specific antibody demonstrated that subsets of TRCs were immunopositive for 5-HT(1A). With the use of double-labeling, serotonin- and 5-HT(1A)-immunopositive cells were observed exclusively in nonoverlapping populations. On the other hand, 5-HT(3)-immunopositive taste receptor cells were not observed. This observation, combined with other data, suggests 5-HT(3) is expressed in postsynaptic neural elements within the bud. We hypothesize that 5-HT release from TRCs activates postsynaptic 5-HT(3) receptors on afferent nerve fibers and, via a paracrine route, inhibits neighboring TRCs via 5-HT(1A) receptors. The ole of the 5-HT(1A)-expressing TRC within the taste bud remains to be explored.  相似文献   

8.
Mechanisms of serotonin-induced lymphocyte proliferation inhibition   总被引:1,自引:0,他引:1  
When human peripheral blood lymphocytes were stimulated with phytohemagglutinin in the presence of serotonin, inhibition of [3H]thymidine incorporation occurred, the most marked inhibition occurring at high (10(-3)M) serotonin concentrations. This effect could not be reversed by the addition of Interleukin 2 (IL-2)-containing supernatants. Cytofluorometric analysis showed that virtually all of the cells remained in the G0 phase (unactivated) at 24 hr while some of the cells entered the G1a and G1b phases of the cell cycle by 42 hr. The cellular production of IL-2 was not affected by serotonin, as supernatants of treated cultures contained essentially the same IL-2 titers as did control cultures. Serotonin seemed to primarily affect cell activation and had little or no effect on proliferating cells. This was further confirmed by the lack of effects of serotonin on a variety of established proliferating lymphocyte, macrophage, and fibroblast cell lines. By contrast, dose-dependent inhibition of IL-2-dependent CTLL cells occurred. Serotonin was not toxic even at 10(-3) M concentrations. A marked decrease in IL-2 receptors and a change in their distribution on responder cells was seen when treated cultures were examined with the anti-Tac monoclonal antibody. At 24 hr this effect was contrastingly not seen for the OKT-8 marker, although a slight decrease in OKT-4-positive cells was seen. Serotonin thus produced an inhibition of lectin-stimulated lymphocyte proliferation via a mechanism independent of IL-2 production, and caused a decrease in the expression and distribution of IL-2 receptors on the surface of responder cells.  相似文献   

9.
Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT1A and 5HT1B receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT2 receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT1B/1D receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT1A receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT2 receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT2 receptors, but that serotonergic activation of 5HT1A receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT1A receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT1A activity in other systems.  相似文献   

10.
Recent studies have proposed a role for serotonin and its transporter in regulation of bone cell function. In the present study, we examined the in vitro effects of serotonin and the serotonin transporter inhibitor fluoxetine "Prozac" on osteoblasts and osteoclasts. Human mononuclear cells were differentiated into osteoclasts in the presence of serotonin or fluoxetine. Both compounds affected the total number of differentiated osteoclasts as well as bone resorption in a bell-shaped manner. RT-PCR on the human osteoclasts demonstrated several serotonin receptors, the serotonin transporter, and the rate-limiting enzyme in serotonin synthesis, tryptophan hydroxylase 1 (Tph1). Tph1 expression was also found in murine osteoblasts and osteoclasts, indicating an ability to produce serotonin. In murine pre-osteoclasts (RAW264.7), serotonin as well as fluoxetine affected proliferation and NFkappaB activity in a biphasic manner. Proliferation of human mesenchymal stem cells (MSC) and primary osteoblasts (NHO), and 5-HT2A receptor expression was enhanced by serotonin. Fluoxetine stimulated proliferation of MSC and murine preosteoblasts (MC3T3-E1) in nM concentrations, microM concentrations were inhibitory. The effect of fluoxetine seemed direct, probably through 5-HT2 receptors. Serotonin-induced proliferation of MC3T3-E1 cells was inhibited by the PKC inhibitor (GF109203) and was also markedly reduced when antagonists of the serotonin receptors 5-HT2B/C or 5-HT2A/C were added. Serotonin increased osteoprotegerin (OPG) and decreased receptor activator of NF-kappaB ligand (RANKL) secretion from osteoblasts, suggesting a role in osteoblast-induced inhibition of osteoclast differentiation, whereas fluoxetine had the opposite effect. This study further describes possible mechanisms by which serotonin and the serotonin transporter can affect bone cell function.  相似文献   

11.
Serotonin receptors - from molecular biology to clinical applications   总被引:1,自引:0,他引:1  
Serotonin (5-hydroxytryptamine) is an ubiquitary monoamine acting as one of the neurotransmitters at synapses of nerve cells. Serotonin acts through several receptor types and subtypes. The profusion of 5-HT receptors should eventually allow a better understanding of the different and complex processes in which serotonin is involved. Its role is expected in the etiology of several diseases, including depression, schizophrenia, anxiety and panic disorders, migraine, hypertension, pulmonary hypertension, eating disorders, vomiting and irritable bowel syndromes. In the past 20 years, seven distinct families of 5-HT receptors have been identified and various subpopulations have been described for several of them. Increasing number of 5-HT receptors has made it difficult to unravel the role of 5-HT receptor subpopulations due to the lack of suitable selective agents. The present review describes the different populations and nomenclature of recently discovered 5-HT receptors and their pharmacological relevance.  相似文献   

12.
BackgroundAllergic rhinitis is characterized by a remodeling of nasal epithelium. Since the Notch and TGF-β signaling pathways are known to be involved in cell differentiation and remodeling processes and leptin adipokine has already been identified as a marker for homeostasis in human bronchial and nasal epithelial cells of asthmatics, roles played by these pathways have been investigated for chronic allergic rhinitis.MethodsThe leptin/leptin receptor expression has been investigated in a study with 40 biopsies from allergic (AR, n = 18) and non-allergic (C, n = 22) inferior turbinates, using immunohistochemistry, immunofluorescence staining and RT-PCR. In addition, extracts from in vitro samples prepared from primary cells of inferior turbinates as well as in vitro cultured human nasal epithelial RPMI 2650 cells (ATCC-CCL-30) were also tested for leptin expression and activation of the Notch-1 pathway.ResultsWith regards to AR, in vivo expression levels of both leptin and its receptor significantly decreased in comparison to C. Furthermore, leptin receptor mRNA was significantly reduced in AR as compared to C. Immunofluorescence showed an apparent co-expression of leptin receptor with Notch-1, which was not seen with TGF-β. In vitro, in primary turbinate epithelial cells, the expression of leptin receptor and Notch-1 significantly decreased in AR as compared to C. Moreover, in RPMI 2650 cells, leptin receptor expression was shown to be induced by Notch-1 ligand signaling.ConclusionThus, both the leptin and Notch-1 pathways appear to represent markers for epithelial homeostasis in allergic rhinitis.  相似文献   

13.
Serotonin regulates numerous processes in the mammary gland. Our objective was to discover novel genes, pathways and functions which serotonin modulates during lactation. The rate limiting enzyme in the synthesis of non-neuronal serotonin is tryptophan-hydroxylase (TPH1). Therefore, we used TPH1 deficient dams (KO; serotonin deficient, n = 4) and compared them to wild-type (WT; n = 4) and rescue (RC; KO + 100 mg/kg 5-hydroxytryptophan injected daily, n = 4) dams. Mammary tissues were collected on day 10 of lactation. Total RNA extraction, amplification, library preparation and sequencing were performed following the Illumina mRNA-Seq. Overall, 97 and 204 genes (false discovery rate, FDR ≤ 0.01) exhibited a minimum of a 2-fold expression difference between WT vs. KO and WT vs. RC dams, respectively. Most differentially expressed genes were related to calcium homeostasis, apoptosis regulation, cell cycle, cell differentiation and proliferation, and the immune response. Additionally, gene set enrichment analysis using Gene Ontology and Medical Subject Headings databases revealed the alteration of several biological processes (FDR ≤ 0.01) including fat cell differentiation and lipid metabolism, regulation of extracellular signal-related kinase and mitogen-activated kinase cascades, insulin resistance, nuclear transport, membrane potential regulation, and calcium release from the endoplasmic reticulum into the cytosol. The majority of the biological processes and pathways altered in the KO dams are central for mammary gland homeostasis. Increasing peripheral serotonin in the RC dams affects specific pathways that favor lactation. Our data confirms the importance of serotonin during lactation in the mammary gland.  相似文献   

14.
Serotonin has been shown to be a neuromodulator in the Aplysia californica CNS. The diversity of serotonin actions is due to the existence of several different receptor subtypes. In this study we report the cloning of a full-length cDNA, coding for a novel serotonin receptor (5-HTap2). The receptor protein bears the characteristics of G protein-coupled receptors. It shares 68% and 34% of its amino acid sequence identity with the 5-HTlym receptor from Lymnaea stagnalis and the mammalian 5-HT1A receptor, respectively. When transfected in HEK 293 cells, 5-HTap2 was negatively coupled to adenylate cyclase. Ligand binding analysis indicated that the order of potencies of various drugs for the inhibition of [3H]LSD binding was: methiothepin > metergoline > 5-CT > PAPP > 5-HT > ketanserin > NAN-190 > 8-OH-DPAT > clozapine. RT-PCR amplification of RNA isolated from different tissues indicated that this receptor is expressed in the CNS and in bag cells. The expression of 5-HTap2 restricted to the CNS suggests an important role for this receptor in the modulation of neuronal functions in Aplysia. Moreover, the high expression of 5-HTap2 in the bag cells, associated with its pharmacological profile, suggests that this receptor may be implicated in modulating the afterdischarge during the egg-laying behavior.  相似文献   

15.
Serotonin S1 and S2 receptors were studied in brains obtained at post-mortem from controls and patients with Huntington's disease. Significant reductions in serotonin S1 receptors were observed in putamen and hippocampus but not in frontal and temporal cortices. Serotonin S2 receptors were unchanged in all four brain regions. The results suggest that S1 receptors may be located on susceptible cells in both the putamen and hippocampus in Huntington's disease.  相似文献   

16.
Serotonin reduces the behavior tolerance of Caenorhabditis elegans of the N2 wild-type strain (swimming induced by the mechanical stimulus) to a temperature of 36°C. The sensitivity to the serotonin influence on the behavior thermotolerance remains intact in strains with null mutations of mod-1(ok103) and ser-1(ok345) serotonin receptor genes, and is almost completely lost in the ser-4(ok512) strain with null mutation in the gene of the SER-4 serotonin receptor, which is a homologue of 5-HT1 mammalian serotonin receptor. In addition, nematodes of the ser-4(ok512) strain have high behavior thermotolerance in the absence of the exogenous serotonin compared to the N2 strain. These data indicate the involvement of the ser-4 gene in the serotonin regulation of the tolerance of C. elegance nervous system functions to hyperthermia.  相似文献   

17.
The effect of mutations (V344E and T343A/V344E) in the third intracellular loop of the serotonin 5-HT(1A) receptor expressed transiently in human embryonic kidney 293 cells have been examined in terms of receptor/G protein interaction and signaling. Serotonin, (R)-8-hydroxy-2-dipropylaminotetralin [(R)-8-OH-DPAT], and buspirone inhibited cyclic AMP production in cells expressing native and mutant 5-HT(1A) receptors. Serotonin, however, produced inverse bell-shaped cyclic AMP concentration-response curves at native and mutant 5-HT(1A) receptors, indicating coupling not only to G(i)/G(o), but also to G(s). (R)-8-OH-DPAT, however, induced stimulation of cyclic AMP production only after inactivation of G(i)/G(o) proteins by pertussis toxin and only at the mutant receptors. The partial agonist buspirone was unable to induce coupling to G(s) at any of the receptors, even after pertussis toxin treatment. The basal activities of native and mutant 5-HT(1A) receptors in suppressing cyclic AMP levels were not found to be significantly different. The receptor binding characteristics of the native and mutant receptors were investigated using the novel 5-HT(1A) receptor antagonist [(3)H]NAD-299. For other receptors, analogous mutations have produced constitutive activation. This does not occur for the 5-HT(1A) receptor, and for this receptor the mutations seem to alter receptor/G protein coupling, allowing ligand-dependent coupling of receptor to G(s) in addition to G(i)/G(o) proteins.  相似文献   

18.
J L Plassat  U Boschert  N Amlaiky    R Hen 《The EMBO journal》1992,11(13):4779-4786
Serotonin (5-HT) is a neuromodulator that mediates a wide range of physiological functions by activating multiple receptors. Using a strategy based on amino acid sequence homology between 5-HT receptors that interact with G proteins, we have isolated a cDNA encoding a new serotonin receptor from a mouse brain library. Amino acid sequence comparisons revealed that this receptor was a distant relative of all previously identified 5-HT receptors; we therefore named it 5HT5. When expressed in Cos-7 cells and NIH-3T3 cells, the 5HT5 receptor displayed a high affinity for the serotonergic radioligand [125I]LSD. Surprisingly, its pharmacological profile resembled that of the 5HT1D receptor, which is a 5-HT receptor subtype which has been shown to inhibit adenylate cyclase and which is predominantly expressed in basal ganglia. However, unlike 5HT1D receptors, the 5HT5 receptor did not inhibit adenylate cyclase and its mRNA was not found in basal ganglia. On the contrary, in situ hybridization experiments revealed that the 5HT5 mRNA was expressed predominantly in cerebral cortex, hippocampus, habenula, olfactory bulb and granular layer of the cerebellum. Our results therefore demonstrate that the 5HT1D receptors constitute a heterogeneous family of receptors with distinct intracellular signalling properties and expression patterns.  相似文献   

19.
Serotonin receptors are the product of 15 distinct genes, 14 of which are G protein-coupled receptors. These receptors are expressed in a wide range of cell types, including distinct neuronal populations, and promote diverse functional responses in multiple organ systems. These receptors are important for mediating the in vivo effects of their cognate neurotransmitter, serotonin, as well as the endogenous tryptamines. In addition, the actions of many drugs are mediated, either directly or indirectly, through serotonin receptors, including antidepressants, antipsychotics, anxiolytics, sleep aids, migraine therapies, gastrointestinal therapeutics and hallucinogenic drugs. It is becoming increasingly evident that serotonin receptors can engage in differential signaling that is determined by the chemical nature of the ligand and that ligands that demonstrate a predilection for inducing a particular signaling cascade are considered to have “functional selectivity”. The elucidation of the cellular signaling pathways that mediate the physiological responses to serotonin and other agonists is an active area of investigation and will be an onward-looking focal point for determining how to effectively and selectively promote beneficial serotonergic mimicry while avoiding unwanted clinical side effects. This review highlights the modulation of serotonin 2A, 2C, and four receptors by β-arrestins, which may represent a fulcrum for biasing receptor responsiveness in vivo.  相似文献   

20.
Serotonin and octopamine (OA) are biogenic amines that are active throughout the nervous systems of insects, affecting sensory processing, information coding and behavior. As an initial step towards understanding the modulatory roles of these amines in olfactory processing we cloned two putative serotonin receptors (Ms5HT1A and Ms5HT1B) and one putative OA (MsOAR) receptor from the moth Manduca sexta. Ms5HT1A and Ms5HT1B were both similar to 5HT1-type receptors but differed from each other in their N-terminus and 3rd cytoplasmic loop. Ms5HT1A was nearly identical to a serotonin receptor from Heliothis virescens and Ms5HT1B was almost identical to a serotonin receptor from Bombyx mori. The sequences for homologs of Ms5HT1A from B. mori and Ms5HT1B from H. virescens were also obtained, suggesting that the Lepidoptera likely have at least two serotonin receptors. The MsOAR shares significant sequence homology with pharmacologically characterized OA receptors, but less similarity to putative OA/tyramine receptors from the moths B. mori and H. virescens. Using the MsOAR sequence, fragments encoding putative OA receptors were obtained from B. mori and H. virescens, suggesting that MsOAR is the first OA receptor cloned from a lepidopteran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号