共查询到20条相似文献,搜索用时 0 毫秒
1.
Modlmeier AP Liebmann JE Foitzik S 《Proceedings. Biological sciences / The Royal Society》2012,279(1736):2142-2150
The fitness consequences of animal personalities (also known as behavioural syndromes) have recently been studied in several solitary species. However, the adaptive significance of collective personalities in social insects and especially of behavioural variation among group members remains largely unexplored. Although intracolonial behavioural variation is an important component of division of labour, and as such a key feature for the success of societies, empirical links between behavioural variation and fitness are scarce. We investigated aggression, exploration and brood care behaviour in Temnothorax longispinosus ant colonies. We focused on two distinct aspects: intercolonial variability and its consistency across time and contexts, and intracolonial variability and its influence on productivity. Aggressiveness was consistent over four to five months with a new generation of workers emerging in between trial series. Other behaviours were not consistent over time. Exploration of novel environments responded to the sequence of assays: colonies were faster in discovering when workers previously encountered opponents in aggression experiments. Suites of correlated behaviours (e.g. aggression-exploration syndrome) present in the first series did not persist over time. Finally, colonies with more intracolonial behavioural variation in brood care and exploration of novel objects were more productive under standardized conditions than colonies with less variation. 相似文献
2.
In polygynous (multiple queens per nest) colonies of socialinsects, queens can increase their reproductive share by layingmore eggs or by increasing the proportion of eggs that developinto reproductive individuals instead of workers. We used polymorphicmicrosatellite loci to determine the genetically effective contributionof queens to the production of gynes (new queens), males, and2 different cohorts of workers in a polygynous population ofthe ant Formica exsecta. For this purpose, we developed a newmethod that can be used for diploid and haplodiploid organismsto quantify the degree of reproductive specialization amongbreeders in societies where there are too many breeders to ascertainparentage. Using this method, we found a high degree of reproductivespecialization among nest-mate queens in both female- and male-producingcolonies (sex ratio is bimodally distributed in the study population).For example, a high effective proportion of queens (25% and79%, respectively) were specialized in the production of malesin female- and male-producing colonies. Our analyses furtherrevealed that in female-producing colonies, significantly fewerqueens contributed to gyne production than to worker production.Finally, we found significant changes in the identity of queenscontributing to different cohorts of workers. Altogether, thesedata demonstrate that colonies of F. exsecta, and probably thoseof many other highly polygynous social insect species, are composedof reproductive individuals differing in their investment togynes, males, and workers. These findings demonstrate a newaspect of the highly dynamic social organization of complexanimal societies. 相似文献
3.
4.
5.
6.
Raphaël Jeanson Anja Weidenmüller 《Biological reviews of the Cambridge Philosophical Society》2014,89(3):671-687
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within‐group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little‐explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little‐explored avenues for future research on how within‐colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects. 相似文献
7.
8.
Worker caste determination in the army ant Eciton burchellii 总被引:1,自引:0,他引:1
Elaborate division of labour has contributed significantly to the ecological success of social insects. Division of labour is achieved either by behavioural task specialization or by morphological specialization of colony members. In physical caste systems, the diet and rearing environment of developing larvae is known to determine the phenotype of adult individuals, but recent studies have shown that genetic components also contribute to the determination of worker caste. One of the most extreme cases of worker caste differentiation occurs in the army ant genus Eciton, where queens mate with many males and colonies are therefore composed of numerous full-sister subfamilies. This high intracolonial genetic diversity, in combination with the extreme caste polymorphism, provides an excellent test system for studying the extent to which caste determination is genetically controlled. Here we show that genetic effects contribute significantly to worker caste fate in Eciton burchellii. We conclude that the combination of polyandry and genetic variation for caste determination may have facilitated the evolution of worker caste diversity in some lineages of social insects. 相似文献
9.
Tom Wenseleers Heikki Helanter? Denise A. Alves Edgar Due?ez-Guzmán Pekka Pamilo 《Biology letters》2013,9(6)
The conflicts over sex allocation and male production in insect societies have long served as an important test bed for Hamilton''s theory of inclusive fitness, but have for the most part been considered separately. Here, we develop new coevolutionary models to examine the interaction between these two conflicts and demonstrate that sex ratio and colony productivity costs of worker reproduction can lead to vastly different outcomes even in species that show no variation in their relatedness structure. Empirical data on worker-produced males in eight species of Melipona bees support the predictions from a model that takes into account the demographic details of colony growth and reproduction. Overall, these models contribute significantly to explaining behavioural variation that previous theories could not account for. 相似文献
10.
Sirviö A Gadau J Rueppell O Lamatsch D Boomsma JJ Pamilo P Page RE 《Journal of evolutionary biology》2006,19(5):1475-1485
Honeybees are known to have genetically diverse colonies because queens mate with many males and the recombination rate is extremely high. Genetic diversity among social insect workers has been hypothesized to improve general performance of large and complex colonies, but this idea has not been tested in other social insects. Here, we present a linkage map and an estimate of the recombination rate for Acromyrmex echinatior, a leaf-cutting ant that resembles the honeybee in having multiple mating of queens and colonies of approximately the same size. A map of 145 AFLP markers in 22 linkage groups yielded a total recombinational size of 2076 cM and an inferred recombination rate of 161 kb cM(-1) (or 6.2 cM Mb(-1)). This estimate is lower than in the honeybee but, as far as the mapping criteria can be compared, higher than in any other insect mapped so far. Earlier studies on A. echinatior have demonstrated that variation in division of labour and pathogen resistance has a genetic component and that genotypic diversity among workers may thus give colonies of this leaf-cutting ant a functional advantage. The present result is therefore consistent with the hypothesis that complex social life can select for an increased recombination rate through effects on genotypic diversity and colony performance. 相似文献
11.
12.
Behaviour of worker subcastes in the fire ant, Solenopsis invicta, in response to proteinaceous food
ABSTRACT. The effects of division of labour on response behaviour to food in the red imported fire ant, Solenopsis invicta Buren, were examined to determine if caste members differ in amount of food taken, in rate of food transfer, or in internal distribution of food; and to see if food availability, time, or temporal subcaste pairing affect feeding behaviour. To measure differences in behaviour we fed radioiodinated albumin mixed with egg yolk to colonies containing larvae, queens, and (a) foragers and nurses, or (b) foragers and reserves, or (c) nurses and reserves. Samples were taken over a 72-h period and radioactivity in the head, thorax and abdomen of each worker was determined. There were significant differences between nurses, foragers and reserves in quantity of food consumed, rate of transfer, and internal distribution of radioactivity. These differences were related to their respective roles of foraging, food storage and transfer, and brood tending. The quantity of food taken per subcaste was dependent on the total amount of food in the colony, with transfer rates differing between subcastes as the quantity of food in the colony increased. The rate at which protein was transferred between subcastes was slower in the reserves than that in either foragers or nurses. Therefore, reserves may serve as a temporary store of protein for the colony. 相似文献
13.
In polygynous social insects more than one queen reproduces in a colony. In such populations ecological factors affecting survival and reproduction of queens are likely to be of prime importance for social organization. In particular, habitat saturation leading to severe limitations in the availability of nest sites has been suggested to promote high queen number. In this study we examine the social and genetic structure of colonies in the polygynous ant Myrmica sulcinodis. We investigated a single breeding population in two adjacent habitats which differed markedly in the availability of nest sites. In the main habitat M. sulcinodis occupied almost all suitable nest sites, whereas in the other (marginal) habitat most sites were unoccupied by ants, due to a recent fire. In support of the habitat saturation hypothesis, the number of queens per colony which could explain the estimated relatedness among workers was almost five times higher for the main habitat than for the marginal habitat. This is the first demonstration that the kin structure of a social insect population is plastic and responds adaptively to short-term changes in ecological constraints such as nest site availability. Based on combined genetic and demographic data we discuss queen reproductive strategies and suggest that a special class of queen ‘floaters’ only stays ephemerally in the colonies, thus causing a substantial turnover of reproducing queens across years. 相似文献
14.
Multiple mating by females characterizes most insect species, but is relatively uncommon in social insects. Females may mate with multiple mates because they experience the direct benefits of increased survival or fecundity, to acquire high quality mates, or to lower the risk of reduced fecundity by mating with incompatible males. We used the extensive natural variation in mating frequency in the western harvester ant, Pogonomyrmex occidentalis , to test the hypothesis that increased mating by the queen leads to an increase in colony performance. Colonies with greater genetic diversity began to forage earlier in the day and foraged for longer time periods. The workers which initiated foraging were a nonrandom subset of the genotypes present in the colony. We used a statistical approach to correctly predict the direction and magnitude of the correlation between genetic diversity and colony foraging activity. 相似文献
15.
16.
We assessed patterns of new queen recruitment in a polygyne(multiple
queens per nest) population of the fire ant Solenopsisinvicta in its
introduced range. Newly recruited queens wereidentified using four
physiological markers, and genotypic datafrom nuclear and mitochondrial
markers were used to estimaterelatedness of new nest mate queens to each
other and to theolder nest mate queens. In total, 1.7% of the queens
collectedin late spring and early summer were deemed to be new recruits.The
relatedness of these queens to each other and to the olderqueens within nests
was not significantly different from zero,suggesting that newly recruited
queens represent a random sampleof potential reproductive queens in the
population. Moreover,the number of new queens recruited within nests was not
correlatedwith the number of older queens present and did not differ
significantlyfrom a Poisson distribution. Thus, queen recruitment in this
populationof S. invicta appears to occur at random with respect to
thenumber of older queens present within nests. 相似文献
17.
18.
The theory of inclusive fitness provides a powerful explanation for reproductive altruism in social insects, whereby workers gain inclusive fitness benefit by rearing the brood of related queens. Some ant species, however, have unicolonial population structures where multiple nests, each containing numerous queens, are interconnected and individuals move freely between nests. In such cases, nestmate relatedness values may often be indistinguishable from zero, which is problematic for inclusive fitness-based explanations of reproductive altruism. We conducted a detailed population genetic study in the polygynous ant Formica exsecta, which has been suggested to form unicolonial populations in its native habitat. Analyses based on adult workers indeed confirmed a genetic structuring consistent with a unicolonial population structure. However, at the population level the genetic structuring inferred from worker pupae was not consistent with a unicolonial population structure, but rather suggested a multicolonial population structure of extended family-based nests. These contrasting patterns suggest limited queen dispersal and free adult worker dispersal. That workers indeed disperse as adults was confirmed by mark-recapture measures showing consistent worker movement between nests. Together, these findings describe a new form of social organization, which possibly also characterizes other ant species forming unicolonial populations in their native habitats. Moreover, the genetic analyses also revealed that while worker nestmate relatedness was indistinguishable from zero at a small geographical scale, it was significantly positive at the population level. This highlights the need to consider the relevant geographical scale when investigating the role of inclusive fitness as a selective force maintaining reproductive altruism. 相似文献
19.
Alternative models of territoriality are based on contrastingassumptions about the behavioral processes determining territorysize. In a series of controlled field experiments on the fireant Solenopsis invicta, I tested whether territory size is affectedby the availability of food, as predicted by most economic models,and whether territory size is affected by fighting ability,as predicted by models of competition among neighbors. Abundantfood was offered for 3035 days to selected colonies eitherimmediately next to the nest (experiment 1) or at peripheralsites near the territory boundary (experiment 2). These foodsupplements had no detectable effect on territory size. Furthermore,food placed near the periphery of the territory did not significantlyalter local boundary positions. During both experiments, largecolonies lost more territory than did small colonies, reflectingtemporary declines in worker number due to the seasonal productionof reproductives. Such losses by large colonies during the summermonths create opportunities for newly founded colonies to expandterritories. In a third experiment, colonies from which workerswere removed lost significantly more territory than did unmanipulatedcontrols. These results show that territory areas in S. invictaare strongly affected by the relative fighting ability of neighboringcolonies but provide no evidence that colonies adjust territoryarea in response to short-term changes in the availability offood. 相似文献
20.
Using field assays of leaf preference, we tested the hypothesis that wilting affects the selection of leaves by the leaf-cutting ant Atta laevigata (Fr. Smith). Detached leaves were left to air-dry until noticeably wilted. The area removed by the ants from wilted leaves was significantly greater than the area removed from fresh leaves, this effect being observed in several plant species, in leaves of different age, and in assays with different ant colonies. Leaves collected from water-stressed plants were also preferred to leaves from non-stressed plants.
A. laevigata was found to employ a two-stage, size-related, strategy when cutting plants. Larger workers climbed the plant stem and dropped whole leaves to the ground by severing their petioles; smaller workers cut the lamina of the dropped leaves. The ants frequently left dropped leaves on the ground, until the next foraging day or even later, when they were harvested in a wilted condition in preference to newly-dropped leaves.It is possible that during wilting some repellent substances evaporate or become less effective, thus enhancing leaf palatability. Alternatively or in addition, changes in nutrient and water content may have rendered wilted leaves more palatable to leaf-cutting ants. 相似文献