首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms.  相似文献   

2.
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.  相似文献   

3.
4.
Platinum(II)-based anticancer drugs play an essential role in the clinic today, and a number of coordination compounds with other metals are in current development as promising antitumor drugs. Probably the most prominent non-platinum metal-based drugs are those of ruthenium. Various strategies have been applied for the design of novel drugs with an improved toxicological profile, and one of them involves the preparation of metal complexes in inert high oxidation states [e.g. Pt(IV), Ru(III)]. Three platinum(IV) and two ruthenium(III) drugs have already reached clinical trials. Ideally, hypoxia-selective drugs are delivered to the target environment without prior reduction or major transformation via substitution reactions at the metal center. A (selective) reduction has been proposed to activate the prodrugs by formation of active species, which react with the target more readily and lead ultimately to apoptosis. Investigations on the electrochemical behavior of platinum(IV) and ruthenium(III) cytotoxins and the establishment of preliminary structure-property relationships are therefore of current importance. Herein, we present recent results in the field of metal-centered electron-transfer activated Ru(III), Pt(IV) and Co(III) drugs with regard to design and targeting strategies, prediction of redox potentials in aqueous medium, labilization and enhanced reactivity with potential biological targets upon reduction, and correlations between electrochemical parameters and anticancer activity.  相似文献   

5.
6.
Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selective delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in 'metals in medicine'.  相似文献   

7.
The identification of interactions between drugs and proteins plays key roles in understanding mechanisms underlying drug actions and can lead to new drug design strategies. Here, we present a novel statistical approach, namely PDTD (Predicting Drug Targets with Domains), to predict potential target proteins of new drugs based on derived interactions between drugs and protein domains. The known target proteins of those drugs that have similar therapeutic effects allow us to infer interactions between drugs and protein domains which in turn leads to identification of potential drug-protein interactions. Benchmarking with known drug-protein interactions shows that our proposed methodology outperforms previous methods that exploit either protein sequences or compound structures to predict drug targets, which demonstrates the predictive power of our proposed PDTD method.  相似文献   

8.
DNA is believed to be the primary target for many metal-based drugs. For example, platinum-based anticancer drugs can form specific lesions on DNA that induce apoptosis. New platinum drugs can be designed that have novel modes of interaction with DNA, such as the trinuclear platinum complex BBR3464. Also it is possible to design inert platinum(IV) pro-drugs which are non-toxic in the dark, but lethal when irradiated with certain wavelengths of light. This gives rise to novel DNA lesions which are not as readily repaired as those induced by cisplatin, and provides the basis for a new type of photoactivated chemotherapy. Finally, newly emerging ruthenium(II) organometallic complexes not only bind to DNA coordinatively, but also by H-bonding and hydrophobic interactions triggered by the introduction of extended arene rings into their versatile structures. Intriguingly osmium (the heavier congener of ruthenium) reacts differently with DNA but can also give rise to highly cytotoxic organometallic complexes.  相似文献   

9.
The metal-based drugs represented by cisplatin, carboplatin, and oxaliplatin, prevail in cancer treatment, whereas new therapeutics are extremely slow to step into the clinic. Poor pharmacokinetics, multidrug resistance, and severe side effects greatly limit the development of metal-based anticancer drugs. The robustness and modular composition of supramolecular coordination complexes allow for the incorporation of novel diagnostic and therapeutic modalities, showing promising potentials for precise cancer theranostics. In this mini review, we highlight the recent advances in the development of supramolecular coordination complexes as diagnostic and therapeutic agents. The key focuses of these reports lie in searching sophisticated coordination ligands and nanoformulations that can potentially solve the issues faced by current metal-based drugs including imaging, resistance, toxicity, and pharmacological deficiencies.  相似文献   

10.
In this age of targeted therapy, the failure of most current drug-discovery efforts to yield safe, effective, and inexpensive drugs has generated widespread concern. Successful drug development has been stymied by a general focus on target selection rather than clinical safety and efficacy. The very process of validating the targets themselves is inefficient and in many cases leads to drugs having poor efficacy and undesirable side effects. Indeed, some rationally designed drugs (e.g., inhibitors of receptor tyrosine kinases, tumor necrosis factor (TNF), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), bcr-abl, and proteasomes) are ineffective against cancers and other inflammatory conditions and produce serious side effects. Since any given cancer carries mutations in an estimated 300 genes, this raises an important question about how effective these targeted therapies can ever be against cancer. Thus, it has become necessary to rethink drug development strategies. This review analyzes the shortcomings of rationally designed target-specific drugs against cancer cell signaling pathways and evaluates the available options for future drug development.  相似文献   

11.
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.  相似文献   

12.
The leishmaniases are infectious diseases caused by a number of species of obligate intracellular protozoa of the genus Leishmania with disease manifesting as cutaneous, mucocutaneous and visceral forms. Despite being endemic in more than 80 countries and its being the cause of high morbidity and mortality, leishmaniasis remains a neglected tropical disease. Chemotherapy is the frontline treatment, but drugs in current use suffer from toxic side effects, difficulties in administration and extended treatment times — moreover, resistance is emerging. New anti-leishmanial drugs are a recognised international priority. Here, we review investigations into N-myristoyltransferase (NMT) as a potential drug target. NMT catalyses the co-translational transfer of a C14 fatty acid from myristoyl-CoA onto the N-terminal glycine residue of a significant subset of proteins in eukaryotic cells. This covalent modification influences the stability and interactions of substrate proteins with lipids and partner proteins. Structure-guided development of new lead compounds emerging from high-throughput screening campaigns targeting Leishmania donovani NMT has led to the discovery of potent inhibitors which have been used to gain insights into the role of protein myristoylation in these parasites and to validate NMT as a drug target.  相似文献   

13.
The large number of macromolecular structures deposited with the Protein Data Bank (PDB) describing complexes between proteins and either physiological compounds or synthetic drugs made it possible a systematic analysis of the interactions occurring between proteins and their ligands. In this work, the binding pockets of about 4000 PDB protein‐ligand complexes were investigated and amino acid and interaction types were analyzed. The residues observed with lowest frequency in protein sequences, Trp, His, Met, Tyr, and Phe, turned out to be the most abundant in binding pockets. Significant differences between drug‐like and physiological compounds were found. On average, physiological compounds establish with respect to drugs about twice as many hydrogen bonds with protein atoms, whereas drugs rely more on hydrophobic interactions to establish target selectivity. The large number of PDB structures describing homologous proteins in complex with the same ligand made it possible to analyze the conservation of binding pocket residues among homologous protein structures bound to the same ligand, showing that Gly, Glu, Arg, Asp, His, and Thr are more conserved than other amino acids. Also in the cases in which the same ligand is bound to unrelated proteins, the binding pockets showed significant conservation in the residue types. In this case, the probability of co‐occurrence of the same amino acid type in the binding pockets could be up to thirteen times higher than that expected on a random basis. The trends identified in this study may provide an useful guideline in the process of drug design and lead optimization. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of dengue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein.  相似文献   

15.
李栋 《生物工程学报》2020,36(11):2327-2333
治疗性抗体药物在临床上取得了巨大的成功,然而在有效性和安全性方面还有待提高,同时药物靶点过于集中造成了重复开发、资源浪费等问题。因此,医药企业在研发抗体药物时需要探寻差异化的研发策略,从而在激烈的市场竞争中生存和发展。文中从药物的来源、结构形式、靶点选择、药物作用机制和差异化药物特性等方面探讨了治疗性抗体药物的差异化研发策略。  相似文献   

16.
植物14-3-3蛋白研究进展   总被引:1,自引:0,他引:1  
14-3-3蛋白是真核生物中许多信号传导级联反应的主要调节分子,易于与具有磷酸化的丝氨酸和苏氨酸残基的靶蛋白互作进而调节碳氮代谢、三羧酸循环、莽草酸合成等多种生理过程中的多种酶活性。该文根据近年来国内外对14-3-3蛋白的研究进展,对植物中14-3-3蛋白的发现、基因鉴定、结构和功能以及14-3-3蛋白与其靶蛋白的互作机制进行综述,并对14-3-3蛋白的研究提出了进一步的展望。  相似文献   

17.
光亲和标记技术在药物发现中的应用   总被引:2,自引:0,他引:2  
功能蛋白质组学的研究在药物发现中扮演着重要的角色,而光亲和标记技术是研究功能蛋白质组学的主要策略之一,它主要有两个方面的应用:靶标蛋白的确定和活性小分子配体与靶标蛋白作用模式的揭示,这些信息为药物的发现提供了强有力的支持。  相似文献   

18.
Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters, transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiologi-cal assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.  相似文献   

19.
Those pharmaceutical companies whose goal is to generate novel innovative drugs are faced with the challenge that only a fraction of the compounds tested in clinical trials eventually become a registered drug. This problem of attrition is compounded by the fact that the clinical trial or development stage is by far the most costly phase of bringing a new drug to market, consuming around 80 per cent of the total spend. Transgenic technology represents an attractive approach to reducing the attrition rate of compounds entering clinical trials by increasing the quality of the target and compound combinations making the transition from discovery into development. Transgenic technology can impact at many points in the discovery process, including target identification and target validation, and provides models designed to alert researchers early to potential problems with drug metabolism and toxicity, as well as providing better models for human diseases. In target identification, transgenic animals harbouring large DNA fragments can be used to narrow down genetic regions. Genetic studies often result in the identification of large genomic regions and one way to decrease the region size is to do complementation studies in transgenic animals using, for example, inserts from bacterial artificial chromosome (BAC) clones. In target validation, transgenic animals can be used for in vivo validation of a specific target. Considerable efforts are being made to establish new, rapid and robust tools with general utility for in vivo validation, but, so far, only transgenic animals work reliably on a wide range of targets. Transgenic animals can also be used to generate better disease models. Predictive animal models to test new compounds and targets will significantly speed up the drug discovery process and, more importantly, increase the quality of the compounds taken further in the research and development process. Humanised transgenic animals harbouring the human target molecule can be used to understand the effect of a compound acting on the human target in vivo. Also, models mimicking human drug metabolism will provide a means of assessing the effect of human-specific metabolites and of understanding the pharmacokinetic properties of potential drugs. In toxicology studies, transgenic animals are providing more predictive models. A good example of this are those models routinely used to look for carcinogenicity associated with new compounds.  相似文献   

20.
Metallothioneins (MT) are ubiquitous low-molecular-weight metal-binding intracellular proteins. We used wild type mouse embryo fibroblasts, GKA1, and its MT-null variant, named GKA2, in order to correlate the presence of MT to the response to a number of different antitumor drugs with different mechanisms of action. We studied sensitivity of GKA1 and GKA2 cells to metal-based compounds having alkylating property, or able to generate reactive oxygen species (ROS); as well as to drugs acting with different mechanisms. The absence of MT in GKA2 cells was correlated to higher sensitivity to the metal-based drugs compared to that of GKA1. No marked differences in sensitivity of two cell lines against gemcitabine, taxol, and vinblastine were observed. No significant change in sensitivity of either GKA1 or GKA2 cells to these non-alkylating drugs was seen after heavy metal pretreatments. In GKA1 cells, MT biosynthesis was induced by copper and cadmium but not by zinc treatment under the conditions of these experiments. Induction of MT was directly proportional to decrease in sensitivity of GKA1 cells to the compounds used in this experiment. In contrast to GKA1 cells, the MT-null cells (GKA2) expressed no detectable metallothionein either constitutively or after treatment with zinc, copper, or cadmium. Nonetheless, heavy metal pretreatment of GKA2 cells did not cause any change in their sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号