首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

2.
The multifunctional movement protein (MP) of Tomato mosaic tobamovirus (ToMV) is involved in viral cell-to-cell movement, symptom development, and resistance gene recognition. However, it remains to be elucidated how ToMV MP plays such diverse roles in plants. Here, we show that ToMV MP interacts with the Rubisco small subunit (RbCS) of Nicotiana benthamiana in vitro and in vivo. In susceptible N. benthamiana plants, silencing of NbRbCS enabled ToMV to induce necrosis in inoculated leaves, thus enhancing virus local infectivity. However, the development of systemic viral symptoms was delayed. In transgenic N. benthamiana plants harboring Tobacco mosaic virus resistance-22 (Tm-22), which mediates extreme resistance to ToMV, silencing of NbRbCS compromised Tm-22-dependent resistance. ToMV was able to establish efficient local infection but was not able to move systemically. These findings suggest that NbRbCS plays a vital role in tobamovirus movement and plant antiviral defenses.Plant viruses use at least one movement protein (MP) to facilitate viral spread between plant cells via plasmodesmata (PD; Lucas and Gilbertson, 1994; Ghoshroy et al., 1997). Among viral MPs, the MP of tobamoviruses, such as Tobacco mosaic virus (TMV) and its close relative Tomato mosaic virus (ToMV), is the best characterized. TMV MP specifically accumulates in PD and modifies the plasmodesmatal size exclusion limit in mature source leaves or tissues (Wolf et al., 1989; Deom et al., 1990; Ding et al., 1992). TMV MP and viral genomic RNA form a mobile ribonucleoprotein complex that is essential for cell-to-cell movement of viral infection (Watanabe et al., 1984; Deom et al., 1987; Citovsky et al., 1990, 1992; Kiselyova et al., 2001; Kawakami et al., 2004; Waigmann et al., 2007). TMV MP also enhances intercellular RNA silencing (Vogler et al., 2008) and affects viral symptom development, host range, and host susceptibility to virus (Dardick et al., 2000; Bazzini et al., 2007). Furthermore, ToMV MP is identified as an avirulence factor that is recognized by tomato (Solanum lycopersicum) resistance proteins Tobacco mosaic virus resistance-2 (Tm-2) and Tm-22 (Meshi et al., 1989; Lanfermeijer et al., 2004). Indeed, tomato Tm-22 confers extreme resistance against TMV and ToMV in tomato plants and even in heterologous tobacco (Nicotiana tabacum) plants (Lanfermeijer et al., 2003, 2004).To date, several host factors that interact with TMV MP have been identified. These TMV MP-binding host factors include cell wall-associated proteins such as pectin methylesterase (Chen et al., 2000), calreticulin (Meshi et al., 1989), ANK1 (Ueki et al., 2010), and the cellular DnaJ-like protein MPIP1 (Shimizu et al., 2009). Many cytoskeletal components such as actin filaments (McLean et al., 1995), microtubules (Heinlein et al., 1995), and the microtubule-associated proteins MPB2C (Kragler et al., 2003) and EB1a (Brandner et al., 2008) also interact with TMV MP. Most of these factors are involved in TMV cell-to-cell movement.Rubisco catalyzes the first step of CO2 assimilation in photosynthesis and photorespiration. The Rubisco holoenzyme is a heteropolymer consisting of eight large subunits (RbCLs) and eight small subunits (RbCSs). RbCL was reported to interact with the coat protein of Potato virus Y (Feki et al., 2005). Both RbCS and RbCL were reported to interact with the P3 proteins encoded by several potyviruses, including Shallot yellow stripe virus, Onion yellow dwarf virus, Soybean mosaic virus, and Turnip mosaic virus (Lin et al., 2011). Proteomic analysis of the plant-virus interactome revealed that RbCS participates in the formation of virus complexes of Rice yellow mottle virus (Brizard et al., 2006). However, the biological function of Rubisco in viral infection remains unknown.In this study, we show that RbCS plays an essential role in virus movement, host susceptibility, and Tm-22-mediated extreme resistance in the ToMV-host plant interaction.  相似文献   

3.
Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots.Phosphoenolpyruvate (PEP) carboxylase (PEPC; EC 4.1.1.31) is a ubiquitous and tightly regulated cytosolic enzyme of vascular plants that is also widely distributed in green algae and bacteria. PEPC catalyzes the irreversible β-carboxylation of PEP to form oxaloacetate (OAA) and inorganic phosphate (Pi). Vascular plant PEPCs belong to a small multigene family encoding several closely related plant-type PEPCs (PTPCs), along with a distantly related bacterial-type PEPC (BTPC; O’Leary et al., 2011a). PTPC genes encode 105- to 110-kD polypeptides that typically assemble as approximate 400-kD Class-1 PEPC homotetramers. In contrast, BTPC genes encode larger 116- to 118-kD polypeptides owing to a unique intrinsically disordered region that mediates BTPC’s tight interaction with coexpressed PTPC subunits. This association results in the formation of unusual Class-2 PEPC heterooctameric complexes that are largely desensitized to allosteric effectors and that dynamically associate with the surface of mitochondria in vivo (O’Leary et al., 2009, 2011a; Igawa et al., 2010; Park et al., 2012).The critical role of Class-1 PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. Class-1 PEPCs also fulfill a wide range of crucial nonphotosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis (O’Leary et al., 2011a). Class-1 PEPCs are subject to a complex set of posttranslational controls including allosteric effectors, covalent modification via phosphorylation or monoubiquitination, and protein-protein interactions (Uhrig et al., 2008; O’Leary et al., 2009, 2011a, 2011b). Allosteric activation by Glc-6-P and inhibition by l-malate are routinely observed, whereas phosphorylation and dephosphorylation are catalyzed by a Ca2+-independent PEPC protein kinase (PPCK) and a protein phosphatase type-2A (PP2A), respectively (O’Leary et al., 2011a). Phosphorylation at a conserved N-terminal seryl residue activates Class-1 PEPCs by decreasing inhibition by malate while increasing activation by Glc-6-P. By contrast, Class-1 PEPC is subject to inhibitory monoubiquitination during castor oil (Ricinus communis) seed (COS) germination, or following depodding of developing COS (Uhrig et al., 2008; O’Leary et al., 2011b). Immunoblots of germinating COS extracts revealed a 1:1 ratio of immunoreactive 110- and 107-kD PTPC polypeptides (p110 and p107, respectively). PEPC purification and mass spectrometry (MS) demonstrated that (1) p110 and p107 are subunits of a 440-kD Class-1 PEPC heterotetramer, (2) both subunits arise from the same PTPC gene (RcPpc3) that also encodes the phosphorylated 410-kD Class-1 PEPC homotetramer of intact developing COS, and (3) p110 is a monoubiquitinated form of p107 (Uhrig et al., 2008). The monoubiquitination site (Lys-628) of COS p110 is conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Incubation with a deubiquitinating enzyme converted the Class-1 PEPC p110:p107 heterotetramer into a p107 homotetramer while exerting significant effects on the enzyme’s kinetic properties (Uhrig et al., 2008). PTPC monoubiquitination rather than phosphorylation is widespread throughout the astor plant and appears to be the predominant posttranslational modification (PTM) of Class-1 PEPC that occurs in unstressed plants (O’Leary et al., 2011b). The distinctive developmental patterns of Class-1 PEPC phosphoactivation versus monoubiquitination-inhibition indicated that these PTMs might be mutually exclusive in the castor plant (O’Leary et al., 2011a, 2011b).Substantial evidence indicates that PEPC plays a pivotal role in plant acclimation to nutritional Pi deficiency (Duff et al., 1989; Vance et al., 2003; O’Leary et al., 2011a; Plaxton and Tran, 2011; Supplemental Fig. S1), a common abiotic stress that frequently limits plant growth in natural ecosystems. The marked induction of Class-1 PEPCs during Pi stress has been linked to the synthesis and excretion of large amounts of organic acid anions by roots of Pi-starved (–Pi) plants (O’Leary et al., 2011a; Uhde-Stone et al., 2003; Vance et al., 2003; Shane et al., 2004a). The excreted organic acids chelate metal cations such as Al3+ and Ca2+ that immobilize Pi in the soil, thus increasing soluble Pi concentrations by up to 1,000-fold (Vance et al., 2003). Harsh hakea (Hakea prostrata) is a perennial nonmycotroph that has evolved a host of traits that allow it to thrive in the nutrient-impoverished, ancient soils of western Australia. A crucial adaptation of harsh hakea is its proteoid roots, which excrete copious quantities of citrate and malate to mediate Pi solubilization and acquisition from the soil’s mineral-bound Pi (Supplemental Figs. S1 and S2; Shane et al., 2003, 2004a, 2004b; Shane and Lambers, 2005). Shane and coworkers (2004a) correlated proteoid root development in –Pi harsh hakea with marked increases in respiration, internal carboxylate concentrations, and rates of carboxylate exudation. Immunoblotting indicated that PEPC abundance remained relatively constant during proteoid root development, except in senescing 3-week-old roots, where it showed a marked decline. The PEPC immunoblots also revealed approximately 110- and 100-kD immunoreactive polypeptides that were of equal intensity in young proteoid roots, whereas mature proteoid roots showed a marked reduction in the p110 (Shane et al., 2004a). The possible contribution of PTMs such as phosphorylation to the in vivo activation of proteoid root PEPCs is currently unclear (e.g. see Uhde-Stone et al., 2003). However, this is feasible since the pronounced induction of PPCK genes coupled with the reversible phosphorylation-activation of a Class-1 PEPC isozyme (AtPPC1) has been conclusively demonstrated in –Pi Arabidopsis (Arabidopsis thaliana) suspension cells and seedlings (Gregory et al., 2009).The goal of the current study was to test the hypothesis that PEPC PTMs contribute to the metabolic adaptations of harsh hakea proteoid roots. We report a novel metabolic control paradigm that involves the in vivo deubiquitination and consequent kinetic activation of a phosphorylated form of a C3 plant Class-1 PEPC.  相似文献   

4.
Necrotrophic and biotrophic pathogens are resisted by different plant defenses. While necrotrophic pathogens are sensitive to jasmonic acid (JA)-dependent resistance, biotrophic pathogens are resisted by salicylic acid (SA)- and reactive oxygen species (ROS)-dependent resistance. Although many pathogens switch from biotrophy to necrotrophy during infection, little is known about the signals triggering this transition. This study is based on the observation that the early colonization pattern and symptom development by the ascomycete pathogen Plectosphaerella cucumerina (P. cucumerina) vary between inoculation methods. Using the Arabidopsis (Arabidopsis thaliana) defense response as a proxy for infection strategy, we examined whether P. cucumerina alternates between hemibiotrophic and necrotrophic lifestyles, depending on initial spore density and distribution on the leaf surface. Untargeted metabolome analysis revealed profound differences in metabolic defense signatures upon different inoculation methods. Quantification of JA and SA, marker gene expression, and cell death confirmed that infection from high spore densities activates JA-dependent defenses with excessive cell death, while infection from low spore densities induces SA-dependent defenses with lower levels of cell death. Phenotyping of Arabidopsis mutants in JA, SA, and ROS signaling confirmed that P. cucumerina is differentially resisted by JA- and SA/ROS-dependent defenses, depending on initial spore density and distribution on the leaf. Furthermore, in situ staining for early callose deposition at the infection sites revealed that necrotrophy by P. cucumerina is associated with elevated host defense. We conclude that P. cucumerina adapts to early-acting plant defenses by switching from a hemibiotrophic to a necrotrophic infection program, thereby gaining an advantage of immunity-related cell death in the host.Plant pathogens are often classified as necrotrophic or biotrophic, depending on their infection strategy (Glazebrook, 2005; Nishimura and Dangl, 2010). Necrotrophic pathogens kill living host cells and use the decayed plant tissue as a substrate to colonize the plant, whereas biotrophic pathogens parasitize living plant cells by employing effector molecules that suppress the host immune system (Pel and Pieterse, 2013). Despite this binary classification, the majority of pathogenic microbes employ a hemibiotrophic infection strategy, which is characterized by an initial biotrophic phase followed by a necrotrophic infection strategy at later stages of infection (Perfect and Green, 2001). The pathogenic fungi Magnaporthe grisea, Sclerotinia sclerotiorum, and Mycosphaerella graminicola, the oomycete Phytophthora infestans, and the bacterial pathogen Pseudomonas syringae are examples of hemibiotrophic plant pathogens (Perfect and Green, 2001; Koeck et al., 2011; van Kan et al., 2014; Kabbage et al., 2015).Despite considerable progress in our understanding of plant resistance to necrotrophic and biotrophic pathogens (Glazebrook, 2005; Mengiste, 2012; Lai and Mengiste, 2013), recent debate highlights the dynamic and complex interplay between plant-pathogenic microbes and their hosts, which is raising concerns about the use of infection strategies as a static tool to classify plant pathogens. For instance, the fungal genus Botrytis is often labeled as an archetypal necrotroph, even though there is evidence that it can behave as an endophytic fungus with a biotrophic lifestyle (van Kan et al., 2014). The rice blast fungus Magnaporthe oryzae, which is often classified as a hemibiotrophic leaf pathogen (Perfect and Green, 2001; Koeck et al., 2011), can adopt a purely biotrophic lifestyle when infecting root tissues (Marcel et al., 2010). It remains unclear which signals are responsible for the switch from biotrophy to necrotrophy and whether these signals rely solely on the physiological state of the pathogen, or whether host-derived signals play a role as well (Kabbage et al., 2015).The plant hormones salicylic acid (SA) and jasmonic acid (JA) play a central role in the activation of plant defenses (Glazebrook, 2005; Pieterse et al., 2009, 2012). The first evidence that biotrophic and necrotrophic pathogens are resisted by different immune responses came from Thomma et al. (1998), who demonstrated that Arabidopsis (Arabidopsis thaliana) genotypes impaired in SA signaling show enhanced susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis (formerly known as Peronospora parastitica), while JA-insensitive genotypes were more susceptible to the necrotrophic fungus Alternaria brassicicola. In subsequent years, the differential effectiveness of SA- and JA-dependent defense mechanisms has been confirmed in different plant-pathogen interactions, while additional plant hormones, such as ethylene, abscisic acid (ABA), auxins, and cytokinins, have emerged as regulators of SA- and JA-dependent defenses (Bari and Jones, 2009; Cao et al., 2011; Pieterse et al., 2012). Moreover, SA- and JA-dependent defense pathways have been shown to act antagonistically on each other, which allows plants to prioritize an appropriate defense response to attack by biotrophic pathogens, necrotrophic pathogens, or herbivores (Koornneef and Pieterse, 2008; Pieterse et al., 2009; Verhage et al., 2010).In addition to plant hormones, reactive oxygen species (ROS) play an important regulatory role in plant defenses (Torres et al., 2006; Lehmann et al., 2015). Within minutes after the perception of pathogen-associated molecular patterns, NADPH oxidases and apoplastic peroxidases generate early ROS bursts (Torres et al., 2002; Daudi et al., 2012; O’Brien et al., 2012), which activate downstream defense signaling cascades (Apel and Hirt, 2004; Torres et al., 2006; Miller et al., 2009; Mittler et al., 2011; Lehmann et al., 2015). ROS play an important regulatory role in the deposition of callose (Luna et al., 2011; Pastor et al., 2013) and can also stimulate SA-dependent defenses (Chaouch et al., 2010; Yun and Chen, 2011; Wang et al., 2014; Mammarella et al., 2015). However, the spread of SA-induced apoptosis during hyperstimulation of the plant immune system is contained by the ROS-generating NADPH oxidase RBOHD (Torres et al., 2005), presumably to allow for the sufficient generation of SA-dependent defense signals from living cells that are adjacent to apoptotic cells. Nitric oxide (NO) plays an additional role in the regulation of SA/ROS-dependent defense (Trapet et al., 2015). This gaseous molecule can stimulate ROS production and cell death in the absence of SA while preventing excessive ROS production at high cellular SA levels via S-nitrosylation of RBOHD (Yun et al., 2011). Recently, it was shown that pathogen-induced accumulation of NO and ROS promotes the production of azelaic acid, a lipid derivative that primes distal plants for SA-dependent defenses (Wang et al., 2014). Hence, NO, ROS, and SA are intertwined in a complex regulatory network to mount local and systemic resistance against biotrophic pathogens. Interestingly, pathogens with a necrotrophic lifestyle can benefit from ROS/SA-dependent defenses and associated cell death (Govrin and Levine, 2000). For instance, Kabbage et al. (2013) demonstrated that S. sclerotiorum utilizes oxalic acid to repress oxidative defense signaling during initial biotrophic colonization, but it stimulates apoptosis at later stages to advance necrotrophic colonization. Moreover, SA-induced repression of JA-dependent resistance not only benefits necrotrophic pathogens but also hemibiotrophic pathogens after having switched from biotrophy to necrotrophy (Glazebrook, 2005; Pieterse et al., 2009, 2012).Plectosphaerella cucumerina ((P. cucumerina, anamorph Plectosporum tabacinum) anamorph Plectosporum tabacinum) is a filamentous ascomycete fungus that can survive saprophytically in soil by decomposing plant material (Palm et al., 1995). The fungus can cause sudden death and blight disease in a variety of crops (Chen et al., 1999; Harrington et al., 2000). Because P. cucumerina can infect Arabidopsis leaves, the P. cucumerina-Arabidopsis interaction has emerged as a popular model system in which to study plant defense reactions to necrotrophic fungi (Berrocal-Lobo et al., 2002; Ton and Mauch-Mani, 2004; Carlucci et al., 2012; Ramos et al., 2013). Various studies have shown that Arabidopsis deploys a wide range of inducible defense strategies against P. cucumerina, including JA-, SA-, ABA-, and auxin-dependent defenses, glucosinolates (Tierens et al., 2001; Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014), callose deposition (García-Andrade et al., 2011; Gamir et al., 2012, 2014; Sánchez-Vallet et al., 2012), and ROS (Tierens et al., 2002; Sánchez-Vallet et al., 2010; Barna et al., 2012; Gamir et al., 2012, 2014; Pastor et al., 2014). Recent metabolomics studies have revealed large-scale metabolic changes in P. cucumerina-infected Arabidopsis, presumably to mobilize chemical defenses (Sánchez-Vallet et al., 2010; Gamir et al., 2014; Pastor et al., 2014). Furthermore, various chemical agents have been reported to induce resistance against P. cucumerina. These chemicals include β-amino-butyric acid, which primes callose deposition and SA-dependent defenses, benzothiadiazole (BTH or Bion; Görlach et al., 1996; Ton and Mauch-Mani, 2004), which activates SA-related defenses (Lawton et al., 1996; Ton and Mauch-Mani, 2004; Gamir et al., 2014; Luna et al., 2014), JA (Ton and Mauch-Mani, 2004), and ABA, which primes ROS and callose deposition (Ton and Mauch-Mani, 2004; Pastor et al., 2013). However, among all these studies, there is increasing controversy about the exact signaling pathways and defense responses contributing to plant resistance against P. cucumerina. While it is clear that JA and ethylene contribute to basal resistance against the fungus, the exact roles of SA, ABA, and ROS in P. cucumerina resistance vary between studies (Thomma et al., 1998; Ton and Mauch-Mani, 2004; Sánchez-Vallet et al., 2012; Gamir et al., 2014).This study is based on the observation that the disease phenotype during P. cucumerina infection differs according to the inoculation method used. We provide evidence that the fungus follows a hemibiotrophic infection strategy when infecting from relatively low spore densities on the leaf surface. By contrast, when challenged by localized host defense to relatively high spore densities, the fungus switches to a necrotrophic infection program. Our study has uncovered a novel strategy by which plant-pathogenic fungi can take advantage of the early immune response in the host plant.  相似文献   

5.
Eucalyptus camaldulensis is a tree species in the Myrtaceae that exhibits extremely high resistance to aluminum (Al). To explore a novel mechanism of Al resistance in plants, we examined the Al-binding ligands in roots and their role in Al resistance of E. camaldulensis. We identified a novel type of Al-binding ligand, oenothein B, which is a dimeric hydrolyzable tannin with many adjacent phenolic hydroxyl groups. Oenothein B was isolated from root extracts of E. camaldulensis by reverse-phase high-performance liquid chromatography and identified by nuclear magnetic resonance and mass spectrometry analyses. Oenothein B formed water-soluble or -insoluble complexes with Al depending on the ratio of oenothein B to Al and could bind at least four Al ions per molecule. In a bioassay using Arabidopsis (Arabidopsis thaliana), Al-induced inhibition of root elongation was completely alleviated by treatment with exogenous oenothein B, which indicated the capability of oenothein B to detoxify Al. In roots of E. camaldulensis, Al exposure enhanced the accumulation of oenothein B, especially in EDTA-extractable forms, which likely formed complexes with Al. Oenothein B was localized mostly in the root symplast, in which a considerable amount of Al accumulated. In contrast, oenothein B was not detected in three Al-sensitive species, comprising the Myrtaceae tree Melaleuca bracteata, Populus nigra, and Arabidopsis. Oenothein B content in roots of five tree species was correlated with their Al resistance. Taken together, these results suggest that internal detoxification of Al by the formation of complexes with oenothein B in roots likely contributes to the high Al resistance of E. camaldulensis.Aluminum (Al) toxicity is a major factor that limits plant growth in acid soils and affects approximately 30% of the total ice-free land area of the world (von Uexküll and Mutert, 1995). Although Al in soils exist in nonphytotoxic silicate or oxide forms at neutral pH, it is solubilized into a phytotoxic form, mainly as Al3+, at a pH of less than 5 (Kinraide, 1991; Kochian, 1995). The accumulation of Al in root tips causes rapid inhibition of root elongation, which is a characteristic symptom of Al toxicity in plants (Delhaize and Ryan, 1995; Ma, 2007). In general, plants exhibit an inhibition of root elongation as early as 30 to 120 min after exposure to excessive Al (Barceló and Poschenrieder, 2002). Inhibition of root elongation leads to decreased water and nutrient uptake and, eventually, to restriction of growth of the whole plant.Plants have evolved different levels of Al resistance mediated by two distinct classes of mechanisms (Kochian et al., 2004; Ma, 2007). One strategy is the exclusion of Al from the root tips (exclusion mechanism), and the other is tolerance to Al that enters the root tips (internal tolerance mechanism). The secretion of organic acid anions from roots in response to exposure to Al is the best-documented mechanism for Al exclusion. Organic acid anions (i.e. malate, citrate, and oxalate) can form a complex with Al in the rhizosphere and thereby prevent Al from entering the root tips. The genes encoding transporters for the Al-induced secretion of malate and citrate have been identified and characterized in several plant species (Ryan et al., 2011; Delhaize et al., 2012). Organic acid anions also play a role in the detoxification of Al that enters the roots by means of internal formation of complexes with Al (Ma et al., 1998). However, findings in recent studies increasingly suggest that the Al resistance of some plant species and cultivars cannot be explained solely by these two functions of organic acid anions (Wenzl et al., 2001, 2002; Piñeros et al., 2005; Zheng et al., 2005; Famoso et al., 2010). In addition to organic acid anions, flavonoid-type phenolics (Kidd et al., 2001), phenolic compounds (Ofei-Manu et al., 2001), cyclic hydroxamates (Poschenrieder et al., 2005), and proanthocyanidins (Osawa et al., 2011) in roots or root exudates are proposed as potential organic ligands for Al. The mechanisms by which these additional ligands confer Al resistance remain poorly understood.Eucalyptus camaldulensis is an evergreen tree belonging to the Myrtaceae family and is cultivated in tropical and subtropical regions of the world on account of its superior growth, broad adaptability, and multipurpose wood properties. E. camaldulensis can grow in acid soils and even in acid sulfate soils, where the pH is often lower than 3.5 and the Al concentration in the soil solution often reaches the millimolar level (van Breemen and Pons, 1978). Indeed, seedlings of this species show no inhibition of root elongation and plant growth when exposed to 1 mm Al for 20 d under hydroponic conditions (Tahara et al., 2005). Such Al resistance is considerably higher than that reported for a variety of herbaceous crops and model plants in studies of Al resistance mechanisms; such plants exhibit an inhibition of root elongation at 1 to 50 μm Al (Wenzl et al., 2001). Although our understanding of Al resistance mechanisms in some crops and model plants has improved recently, that for extremely Al-resistant species such as E. camaldulensis is limited.In E. camaldulensis, citrate secretion from roots and its content in the root tips are increased by exposure to Al, suggesting that citrate may contribute to its Al resistance (Tahara et al., 2008a). However, the amounts of organic acid anions, including citrate, secreted from roots and contained within the root tips are lower than those of more sensitive species (Tahara et al., 2008a). Therefore, the high Al resistance of E. camaldulensis cannot be explained only by the presence of organic acid anions. Roots of E. camaldulensis can accumulate large amounts of Al (11 mg g−1 dry weight) with no symptoms of Al toxicity (Tahara et al., 2005), suggesting the existence of additional mechanisms for internal tolerance. In this study, we investigated the presence of novel Al-binding ligands other than organic acid anions in E. camaldulensis roots and identified a hydrolyzable tannin, oenothein B, as a novel type of Al-binding ligand. We also examined the role of the ligand in the internal Al tolerance of E. camaldulensis.  相似文献   

6.
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.The root system is of critical importance for the survival, development, and performance of higher plants, because it is the major organ for anchorage, acquisition of water and nutrients, and carbon storage. Therefore, there is a long-standing interest in the scientific community regarding the structure, function, and development of root systems. Rising concerns about the environmental impact and increasing cost of fertilizers have initiated breeding programs for more resource-efficient cultivars and the development of methods for phenotyping root systems. The opaque nature of soils generally demands destructive methods such as root excavation for subsequent optical assessment (Lynch, 2007; Trachsel et al., 2011). Although efficient for screening large numbers of plants for a limited set of clearly discernible traits, this approach does not allow detailed monitoring of root development over time. Other approaches, such as rhizotrons or mini-rhizotron tubes, where root growth is observed along transparent windows (Nagel et al., 2009), monitor only a fraction of the roots. Methods in which the whole root system is visible are typically based on artificial media such as paper pouches (Chen et al., 2011; Le Marié et al., 2014), three-dimensional (3D) gels (Iyer-Pascuzzi et al., 2010), and hydro- or aeroponics (Herdel et al., 2001). Results may thus not be directly transferable to plants grown in natural 3D soil environments (Gregory et al., 2003). For example, roots are known to grow faster and thinner when the penetration resistance is low (Bengough et al., 2011; Chimungu et al., 2015). Computed tomography (CT; both x-ray and neutron) has been proposed to overcome the mentioned difficulties with studying roots in natural soil. CT has been successfully used to obtain high-resolution images of roots (Moradi et al., 2009; Flavel et al., 2012; Mooney et al., 2012). High resolution is necessary for segmenting roots due to a poor contrast between roots and soil (Jassogne et al., 2009; Mairhofer et al., 2012; Mairhofer et al., 2013). A first direct comparison (to our knowledge) of magnetic resonance imaging (MRI) and x-ray CT for 3D root imaging has recently been published (Metzner et al., 2015), showing that the two modalities pose different opportunities and limitations for root imaging.MRI is based on the magnetic moment of atomic nuclei like 1H (protons), which are highly abundant in living tissues, mainly in water molecules. The magnetic moment can be manipulated using strong magnetic and radio frequency fields that have no known impact on plant development to produce 3D datasets of samples. MRI offers several contrast parameters that can be manipulated for discriminating different structures such as roots from soil background (Rogers and Bottomley, 1987; Jahnke et al., 2009). The basic principles of MRI are described in detail in several textbooks (Callaghan, 1993; Haacke et al., 1999) or review articles (Köckenberger et al., 2004; Blümler et al., 2009; van As et al., 2009; Borisjuk et al., 2012). Research applications to plant roots range from phytopathology (Hillnhütter et al., 2012), across storage root internal structures (Metzner et al., 2014) and water uptake modeling (Stingaciu et al., 2013), to coregistration with positron emission tomography for investigating structure-function relations (Jahnke et al., 2009). Water mobility in roots and soil has also been shown to be detectable with MRI (MacFall and Johnson, 2012; Gruwel, 2014). In particular for imaging roots with MRI, these studies generally explored the applicability of MRI but largely lacked validation of the data against conventional techniques of root visualization after harvest. Our goal was to develop MRI protocols to image roots of plants growing in soil to obtain global root parameters such as root length, mass, or root diameters; gather root growth angles and number of root tips; get spatial information on the distribution of root system architecture (RSA) parameters such as root length densities; and, wherever possible, verify these parameters against harvest data.  相似文献   

7.
8.
The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism.Plants evolved the ability to sense and respond to various environmental stimuli in an integrated fashion. Due to their sessile nature, they respond to directional stimuli such as light, gravity, touch, and moisture by directional organ growth (curvature), a phenomenon termed tropism. Experiments on coleoptiles conducted by Darwin in the 1880s revealed that in phototropism, the light stimulus is perceived by the tip, from which a signal is transmitted to the growing part (Darwin and Darwin, 1880). Darwin postulated that in a similar manner, the root tip perceives stimuli from the environment, including gravity and moisture, processes them, and directs the growth movement, acting like “the brain of one of the lower animals” (Darwin and Darwin, 1880). The transmitted signal in phototropism and gravitropism was later found to be a phytohormone, and its redistribution on opposite sides of the root or shoot was hypothesized to promote differential growth and bending of the organ (Went, 1926; Cholodny, 1927). Over the years, the phytohormone was characterized as indole-3-acetic acid (IAA, auxin; Kögl et al., 1934; Thimann, 1935), and the ‘Cholodny-Went’ theory was demonstrated for gravitropism and phototropism (Rashotte et al., 2000; Friml et al., 2002). In addition to auxin, second messengers such as Ca2+, pH oscillations, reactive oxygen species (ROS) and abscisic acid (ABA) were shown to play an essential role in gravitropism (Young and Evans, 1994; Fasano et al., 2001; Joo et al., 2001; Ponce et al., 2008). Auxin was shown to induce ROS accumulation during root gravitropism, where the gravitropic bending is ROS dependent (Joo et al., 2001; Peer et al., 2013).ROS such as superoxide and hydrogen peroxide were initially considered toxic byproducts of aerobic respiration but currently are known also for their essential role in myriad cellular and physiological processes in animals and plants (Mittler et al., 2011). ROS and antioxidants are essential components of plant cell growth (Foreman et al., 2003), cell cycle control, and shoot apical meristem maintenance (Schippers et al., 2016) and play a crucial role in protein modification and cellular redox homeostasis (Foyer and Noctor, 2005). ROS function as signal molecules by mediating both biotic- (Sagi and Fluhr, 2006; Miller et al., 2009) and abiotic- (Kwak et al., 2003; Sharma and Dietz, 2009) stress responses. Joo et al. (2001) reported a transient increase in intracellular ROS concentrations early in the gravitropic response, at the concave side of maize roots, where auxin concentrations are higher. Indeed, this asymmetric ROS distribution is required for gravitropic bending, since maize roots treated with antioxidants, which act as ROS scavengers, showed reduced gravitropic root bending (Joo et al., 2001). The link between auxin and ROS production was later shown to involve the activation of NADPH oxidase, a major membrane-bound ROS generator, via a PI3K-dependent pathway (Brightman et al., 1988; Joo et al., 2005; Peer et al., 2013). Peer et al. (2013) suggested that in gravitropism, ROS buffer auxin signaling by oxidizing the active auxin IAA to the nonactive and nontransported form, oxIAA.Gravitropic-oriented growth is the default growth program of the plant, with shoots growing upwards and roots downward. However, upon exposure to specific external stimuli, the plant overcomes its gravitropic growth program and bends toward or away from the source of the stimulus. For example, as roots respond to physical obstacles or water deficiency. The ability of roots to direct their growth toward environments of higher water potential was described by Darwin and even earlier and was later defined as hydrotropism (Von Sachs, 1887; Jaffe et al., 1985; Eapen et al., 2005).In Arabidopsis (Arabidopsis thaliana), wild-type seedlings respond to moisture gradients (hydrostimulation) by bending their primary roots toward higher water potential. Upon hydrostimulation, amyloplasts, the starch-containing plastids in root-cap columella cells, which function as part of the gravity sensing system, are degraded within hours and recover upon water replenishment (Takahashi et al., 2003; Ponce et al., 2008; Nakayama et al., 2012). Moreover, mutants with a reduced response to gravity (pgm1) and to auxin (axr1 and axr2) exhibit higher responsiveness to hydrostimulation, manifested as accelerated bending compared to wild-type roots (Takahashi et al., 2002, 2003). Recently, we have shown that hydrotropic root bending does not require auxin redistribution and is accelerated in the presence of auxin polar transport inhibitors and auxin-signaling antagonists (Shkolnik et al., 2016). These results reflect the competition, or interference, between root gravitropism and hydrotropism (Takahashi et al., 2009). However, which cellular signals participate in the integration of the different environmental stimuli that direct root tropic curvature is still poorly understood. Here we sought to assess the potential role of ROS in regulating hydrotropism and gravitropism in Arabidopsis roots.  相似文献   

9.
10.
11.
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.Numerous studies have illustrated the relevant role of dissolved organic matter (DOM) present in soil solution and aquatic reservoirs (lakes, rivers, etc.) in the biological and chemical evolution of both natural and anthropogenic ecosystems (Stevenson, 1994; Tipping, 2002; Chen et al., 2004; Trevisan et al., 2011; Berbara and García, 2014; Canellas and Olivares, 2014; Mora et al., 2014a, 2014b). In many studies, DOM fractionation is made by using the methodology proposed by the International Humic Substances Society. Fractions obtained are operationally named humic acid (HA), fulvic acid, humin, and nonhumic fraction, which includes more hydrophilic compounds (polycarboxylic acids, aminoacids, sugars, etc.; Swift, 1996). Many studies have reported that HAs obtained from either organic materials (soils, soil sediments, composted wastes, etc.) or water reservoirs (rivers, lakes, etc.), extracted with alkaline water solutions, or isolated by resin fixation, reverse osmosis, or ultrafiltration (Alberts and Takács, 2004) affected the development of diverse plant species (for instance, cucumber [Cucumis sativus], tomato [Solanum lycopersicum], maize [Zea mays], wheat [Triticum aestivum], Arabidopsis [Arabidopsis thaliana], and rapeseed [Brassica Napus]) through common signaling pathways, which involved key phytoregulators, such as indole acetic acid (IAA)-nitric oxide (NO; Zandonadi et al., 2010; Canellas et al., 2011; Trevisan et al., 2011; Mora et al., 2012, 2014a), ethylene, and abscisic acid (ABA) in roots (Mora et al., 2012, 2014a) as well as cytokinins in shoots (Mora et al., 2010, 2014b). Recently, Mora et al., 2014a showed that the HA ability to enhance both shoot growth and ABA root concentration in cucumber was regulated by IAA and NO root signaling pathways. However, despite all of this information, the nature of a possible primary, common action on plant roots of HAs with diverse origin and structure remains elusive.Recently, Asli and Neumann (2010) described a new mechanism by which high concentrations of HAs extracted from diverse organic sources decreased shoot plant growth. This mechanism involved the reduction of root hydraulic conductivity (Lpr) resulting from the fouling of root cell wall pores because of the accumulation and aggregation of HA molecules at root surface. Although the concentration of HAs used by Asli and Neumann (2010) (1 g L−1) is much higher than that related to HA plant growth promotion ability (50–250 mg L−1; Rose et al., 2014), the results do raise the hypothesis that the primary, still unknown event emerging from the interaction of humic substances with root surface cells might involve an unspecific, physical action on root permeability and water uptake. This event might trigger a chain of secondary events in the root that, in turn, would affect specific hormone signaling pathways, which may regulate shoot and root growth. This HA action on plant development would be positive (increasing) or negative (decreasing) depending on HAs concentration in the rhizosphere.To explore the suitability of this hypothesis, we have tested the potential role of Lpr in the main mechanism by which HAs promote shoot growth in cucumber. To this end, we used a well-characterized and modeled sedimentary humic acid (SHA) at a concentration (100 mg of SHA organic carbon [C] L−1) that was associated with plant shoot growth promotion in previous studies (Mora, 2009; Mora et al., 2014a, 2014b). We also investigated the functional relationships between these effects of SHA on Lpr and shoot growth as well as in some shoot water-related parameters (leaf stomatal conductance [Gs] and ABA) and those caused by SHA on IAA-NO and ABA root signaling pathways. Finally, taking into account that root plasma membrane aquaporins (plasma membrane intrinsic proteins [PIPs]) are involved in the ABA regulation of Lpr in other plant systems, we also studied the role of PIPs in SHA effects on plant shoot growth.The results obtained here show that SHA enhances shoot growth in cucumber through ABA-dependent increases in both Lpr and root PIPs (CsPIPs) gene up-regulation.  相似文献   

12.
A major contributor to the global carbon cycle is plant respiration. Elevated atmospheric CO2 concentrations may either accelerate or decelerate plant respiration for reasons that have been uncertain. We recently established that elevated CO2 during the daytime decreases plant mitochondrial respiration in the light and protein concentration because CO2 slows the daytime conversion of nitrate (NO3) into protein. This derives in part from the inhibitory effect of CO2 on photorespiration and the dependence of shoot NO3 assimilation on photorespiration. Elevated CO2 also inhibits the translocation of nitrite into the chloroplast, a response that influences shoot NO3 assimilation during both day and night. Here, we exposed Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) plants to daytime or nighttime elevated CO2 and supplied them with NO3 or ammonium as a sole nitrogen (N) source. Six independent measures (plant biomass, shoot NO3, shoot organic N, 15N isotope fractionation, 15NO3 assimilation, and the ratio of shoot CO2 evolution to O2 consumption) indicated that elevated CO2 at night slowed NO3 assimilation and thus decreased dark respiration in the plants reliant on NO3. These results provide a straightforward explanation for the diverse responses of plants to elevated CO2 at night and suggest that soil N source will have an increasing influence on the capacity of plants to mitigate human greenhouse gas emissions.The CO2 concentration in Earth’s atmosphere has increased from about 270 to 400 µmol mol–1 since 1800, and may double before the end of the century (Intergovernmental Panel on Climate Change, 2013). Plant responses to such increases are highly variable, but plant nitrogen (N) concentrations generally decline under elevated CO2 (Cotrufo et al., 1998; Long et al., 2004). One explanation for this decline is that CO2 inhibits nitrate (NO3) assimilation into protein in the shoots of C3 plants during the daytime (Bloom et al., 2002, 2010, 2012, 2014; Cheng et al., 2012; Pleijel and Uddling, 2012; Myers et al., 2014; Easlon et al., 2015; Pleijel and Högy, 2015). This derives in part from the inhibitory effect of CO2 on photorespiration (Foyer et al., 2009) and the dependence of shoot NO3 assimilation on photorespiration (Rachmilevitch et al., 2004; Bloom, 2015).A key factor in global carbon budgets is plant respiration at night (Amthor, 1991; Farrar and Williams, 1991; Drake et al., 1999; Leakey et al., 2009). Nighttime elevated CO2 may inhibit, have a negligible effect on, or stimulate dark respiration, depending on the plant species (Bunce, 2001, 2003; Wang and Curtis, 2002), plant development stage (Wang et al., 2001; Li et al., 2013), experimental approach (Griffin et al., 1999; Baker et al., 2000; Hamilton et al., 2001; Bruhn et al., 2002; Jahnke and Krewitt, 2002; Bunce, 2004), and total N supply (Markelz et al., 2014). The current study is, to our knowledge, the first to examine the influence of N source, NO3 versus ammonium (NH4+), on plant dark respiration at elevated CO2 during the night.Plant organic N compounds account for less than 5% of the total dry weight of a plant, but conversion of NO3 into organic N expends about 25% of the total energy in shoots (Bloom et al., 1989) and roots (Bloom et al., 1992). During the day, photorespiration supplies a portion of the energy (Rachmilevitch et al., 2004; Foyer et al., 2009), but at night, this energetic cost is borne entirely by the respiration of C substrates (Amthor, 1995) and may divert a substantial amount of reductant from the mitochondrial electron transport chain (Cousins and Bloom, 2004). The relative importance of NO3 assimilation at night versus the day, however, is still a matter of intense debate (Nunes-Nesi et al., 2010). Here, we estimated NO3 assimilation using several independent methods and show in Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum), two diverse C3 plants, that NO3 assimilation at night can be substantial, and that elevated CO2 at night inhibits this process.  相似文献   

13.
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.Aerenchyma formation is a morphological adaptation of plants to complete submergence and waterlogging of the soil, and facilitates internal gas diffusion (Armstrong, 1979; Jackson and Armstrong, 1999; Colmer, 2003; Voesenek et al., 2006; Bailey-Serres and Voesenek, 2008; Licausi and Perata, 2009; Sauter, 2013; Voesenek and Bailey-Serres, 2015). To adapt to waterlogging in soil, rice (Oryza sativa) develops lysigenous aerenchyma in shoots (Matsukura et al., 2000; Colmer and Pedersen, 2008; Steffens et al., 2011) and roots (Jackson et al., 1985b; Justin and Armstrong, 1991; Kawai et al., 1998), which is formed by programmed cell death and subsequent lysis of some cortical cells (Jackson and Armstrong, 1999; Evans, 2004; Yamauchi et al., 2013). In rice roots, lysigenous aerenchyma is constitutively formed under aerobic conditions (Jackson et al., 1985b), and its formation is further induced under oxygen-deficient conditions (Colmer et al., 2006; Shiono et al., 2011). The former and latter are designated constitutive and inducible lysigenous aerenchyma formation, respectively (Colmer and Voesenek, 2009). The gaseous plant hormone ethylene regulates adaptive growth responses of plants to submergence (Voesenek and Blom, 1989; Voesenek et al., 1993; Visser et al., 1996a,b; Lorbiecke and Sauter, 1999; Hattori et al., 2009; Steffens and Sauter, 2009; van Veen et al., 2013). Ethylene also induces lysigenous aerenchyma formation in roots of some gramineous plants (Drew et al., 2000; Shiono et al., 2008). The treatment of roots with ethylene or its precursor (1-aminocyclopropane-1-carboxylic acid [ACC]) stimulates aerenchyma formation in rice (Justin and Armstrong, 1991; Colmer et al., 2006; Yukiyoshi and Karahara, 2014), maize (Zea mays; Drew et al., 1981; Jackson et al., 1985a; Takahashi et al., 2015), and wheat (Triticum aestivum; Yamauchi et al., 2014a,b). Moreover, treatment of roots with inhibitors of ethylene action or ethylene biosynthesis effectively blocks aerenchyma formation under hypoxic conditions in maize (Drew et al., 1981; Konings, 1982; Jackson et al., 1985a; Rajhi et al., 2011).Ethylene biosynthesis is accomplished by two main successive enzymatic reactions: conversion of S-adenosyl-Met to ACC by 1-aminocyclopropane-1-carboxylic acid synthase (ACS), and conversion of ACC to ethylene by 1-aminocyclopropane-1-carboxylic acid oxidase (ACO; Yang and Hoffman, 1984). The activities of both enzymes are enhanced during aerenchyma formation under hypoxic conditions in maize root (He et al., 1996). Since the ACC content in roots of maize is increased by oxygen deficiency and is strongly correlated with ethylene production (Atwell et al., 1988), ACC biosynthesis is essential for ethylene production during aerenchyma formation in roots. In fact, exogenously supplied ACC induced ethylene production in roots of maize (Drew et al., 1979; Konings, 1982; Atwell et al., 1988) and wheat (Yamauchi et al., 2014b), even under aerobic conditions. Ethylene production in plants is inversely related to oxygen concentration (Yang and Hoffman, 1984). Under anoxic conditions, the oxidation of ACC to ethylene by ACO, which requires oxygen, is almost completely repressed (Yip et al., 1988; Tonutti and Ramina, 1991). Indeed, anoxic conditions stimulate neither ethylene production nor aerenchyma formation in maize adventitious roots (Drew et al., 1979). Therefore, it is unlikely that the root tissues forming inducible aerenchyma are anoxic, and that the ACO-mediated step is repressed. Moreover, aerenchyma is constitutively formed in rice roots even under aerobic conditions (Jackson et al., 1985b), and thus, after the onset of waterlogging, oxygen can be immediately supplied to the apical regions of roots through the constitutively formed aerenchyma.Very-long-chain fatty acids (VLCFAs; ≥20 carbons) are major constituents of sphingolipids, cuticular waxes, and suberin in plants (Franke and Schreiber, 2007; Kunst and Samuels, 2009). In addition to their structural functions, VLCFAs directly or indirectly participate in several physiological processes (Zheng et al., 2005; Reina-Pinto et al., 2009; Roudier et al., 2010; Ito et al., 2011; Nobusawa et al., 2013; Tsuda et al., 2013), including the regulation of ethylene biosynthesis (Qin et al., 2007). During fiber cell elongation in cotton ovules, ethylene biosynthesis is enhanced by treatment with saturated VLCFAs, especially 24-carbon fatty acids, and is suppressed by an inhibitor of VLCFA biosynthesis (Qin et al., 2007). The first rate-limiting step in VLCFA biosynthesis is condensation of acyl-CoA with malonyl-CoA by β-ketoacyl-CoA synthase (KCS; Joubès et al., 2008). KCS enzymes are thought to determine the substrate and tissue specificities of fatty acid elongation (Joubès et al., 2008). The Arabidopsis (Arabidopsis thaliana) genome has 21 KCS genes (Joubès et al., 2008). In the Arabidopsis cut1 mutant, which has a defect in the gene encoding CUT1 that is required for cuticular wax production (i.e. one of the KCS genes), the expression of AtACO genes and growth of root cells were reduced when compared with the wild type (Qin et al., 2007). Furthermore, expression of the AtACO genes was rescued by exogenously supplied saturated VLCFAs (Qin et al., 2007). These observations imply that VLCFAs or their derivatives work as regulatory factors for gene expression during some physiological processes in plants.reduced culm number1 (rcn1) was first identified as a rice mutant with a low tillering rate in a paddy field (Takamure and Kinoshita, 1985; Yasuno et al., 2007). The rcn1 (rcn1-2) mutant has a single nucleotide substitution in the gene encoding a member of the ATP-binding cassette (ABC) transporter subfamily G, RCN1/OsABCG5, causing an Ala-684Pro substitution (Yasuno et al., 2009). The mutation results in several mutant phenotypes, although the substrates of RCN1/OsABCG5 have not been determined (Ureshi et al., 2012; Funabiki et al., 2013; Matsuda et al., 2014). We previously found that the rcn1 mutant has abnormal root morphology, such as shorter root length and brownish appearance of roots, under stagnant (deoxygenated) conditions (which mimics oxygen-deficient conditions in waterlogged soils). We also found that the rcn1 mutant accumulates less of the major suberin monomers originating from VLCFAs in the outer part of adventitious roots, and this results in a reduction of a functional apoplastic barrier in the root hypodermis (Shiono et al., 2014a).The objective of this study was to elucidate the molecular basis of inducible aerenchyma formation. To this end, we examined lysigenous aerenchyma formation and ACC, ethylene, and VLCFA accumulation and their biosyntheses in rcn1 roots. Based on the results of these studies, we propose that VLCFAs are involved in inducible aerenchyma formation through the enhancement of ethylene biosynthesis in rice roots.  相似文献   

14.
15.
16.
17.
18.
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.In their environment, plants are challenged by potentially pathogenic microorganisms. In response, they express a set of defense mechanisms including preformed structural and chemical barriers, as well as an innate immune response quickly activated after microorganism perception (Boller and Felix, 2009). Plant innate immunity is triggered after recognition by pattern recognition receptors of conserved pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs, respectively) or by plant endogenous molecules released by pathogen invasion and called danger-associated molecular patterns (Boller and Felix, 2009; Dodds and Rathjen, 2010). This first step of recognition leads to the activation of MAMP-triggered immunity (MTI). Successful pathogens can secrete effectors that interfere or suppress MTI, resulting in effector-triggered susceptibility. A second level of perception involves the direct or indirect recognition by specific receptors of pathogen effectors leading to effector-triggered immunity (ETI; Boller and Felix, 2009; Dodds and Rathjen, 2010). Whereas MTI and ETI are thought to involve common signaling network, ETI is usually quantitatively stronger than MTI and associated with more sustained and robust immune responses (Katagiri and Tsuda, 2010; Tsuda and Katagiri, 2010).The plant hormones, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) have emerged as key players in the signaling networks involved in MTI and ETI (Robert-Seilaniantz et al., 2007; Tsuda et al., 2009; Katagiri and Tsuda, 2010; Mersmann et al., 2010; Tsuda and Katagiri, 2010; Robert-Seilaniantz et al., 2011). Interactions between these signal molecules allow the plant to activate and/or modulate an appropriate spectrum of responses, depending on the pathogen lifestyle, necrotroph or biotroph (Glazebrook, 2005; Koornneef and Pieterse, 2008). It is assumed that JA and ET signaling pathways are important for resistance to necrotrophic fungi including Botrytis cinerea and Alternaria brassicicola (Thomma et al., 2001; Ferrari et al., 2003; Glazebrook, 2005). Infection of Arabidopsis (Arabidopsis thaliana) with B. cinerea causes the induction of the JA/ET responsive gene PLANT DEFENSIN1.2 (PDF1.2; Penninckx et al., 1996; Zimmerli et al., 2001). Induction of PDF1.2 by B. cinerea is blocked in ethylene-insensitive2 (ein2) and coronatine-insensitive1 (coi1) mutants that are respectively defective in ET and JA signal transduction pathways. Moreover, ein2 and coi1 plants are highly susceptible to B. cinerea infection (Thomma et al., 1998; Thomma et al., 1999). JA/ET-dependent responses do not seem to be usually induced during resistance to biotrophs, but they can be effective if they are stimulated prior to pathogen challenge (Glazebrook, 2005). Plants impaired in SA signaling are highly susceptible to biotrophic and hemibiotrophic pathogens. Following pathogen infection, SA hydroxylase (NahG), enhanced disease susceptibility5 (eds5), or SA induction-deficient2 (sid2) plants are unable to accumulate high SA levels and they display heightened susceptibility to Pseudomonas syringae pv tomato (Pst), Hyaloperonospora arabidopsidis, or Erysiphe orontii (Delaney et al., 1994; Lawton et al., 1995; Wildermuth et al., 2001; Nawrath et al., 2002; Vlot et al., 2009). Mutants that are insensitive to SA, such as nonexpressor of PATHOGENESIS-RELATED (PR) genes1 (npr1), have enhanced susceptibility to these pathogens (Cao et al., 1994; Glazebrook et al., 1996; Shah et al., 1997; Dong, 2004). According to some reports, plant defense against necrotrophs also involves SA. Arabidopsis plants expressing the nahG gene and infected with B. cinerea show larger lesions compared with wild-type plants (Govrin and Levine, 2002). In tobacco (Nicotiana tabacum), acidic isoforms of PR3 and PR5 gene that are specifically induced by SA (Ménard et al., 2004) are up-regulated after challenge by B. cinerea (El Oirdi et al., 2010). Resistance to some necrotrophs like Fusarium graminearum involves both SA and JA signaling pathways (Makandar et al., 2010). It is assumed that SA and JA signaling can be antagonistic (Bostock, 2005; Koornneef and Pieterse, 2008; Pieterse et al., 2009; Thaler et al., 2012). In Arabidopsis, SA inhibits JA-dependent resistance against A. brassicicola or B. cinerea (Spoel et al., 2007; Koornneef et al., 2008). Recent studies demonstrated that ET modulates the NPR1-mediated antagonism between SA and JA (Leon-Reyes et al., 2009; Leon-Reyes et al., 2010a) and suppression by SA of JA-responsive gene expression is targeted at a position downstream of the JA biosynthesis pathway (Leon-Reyes et al., 2010b). Synergistic effects of SA- and JA-dependent signaling are also well documented (Schenk et al., 2000; van Wees et al., 2000; Mur et al., 2006) and induction of some defense responses after pathogen challenge requires intact JA, ET, and SA signaling pathways (Campbell et al., 2003).Isolated MAMPs trigger defense responses that also require the activation of SA, JA, and ET signaling pathways (Tsuda et al., 2009; Katagiri and Tsuda, 2010). For instance, treatment with the flagellin peptide flg22 induces many SA-related genes including SID2, EDS5, NPR1, and PR1 (Ferrari et al., 2007; Denoux et al., 2008), causes SA accumulation (Tsuda et al., 2008; Wang et al., 2009), and activates ET signaling (Bethke et al., 2009; Mersmann et al., 2010). Local application of lipopolysaccharides elevates the level of SA (Mishina and Zeier, 2007). The oomycete Pep13 peptide induces defense responses in potato (Solanum tuberosum) that require both SA and JA (Halim et al., 2009). Although signaling networks induced by isolated MAMPs are well documented, the contribution of SA, JA, and ET in MAMP- or PAMP-induced resistance to biotrophs and necrotrophs is poorly understood.Rhamnolipids (RLs) are glycolipids produced by various bacteria species including some Pseudomonas and Burkholderia species. They are essential for bacterial surface motility and biofilm development (Vatsa et al., 2010; Chrzanowski et al., 2012). RLs are potent stimulators of animal immunity (Vatsa et al., 2010). They have recently been shown to elicit plant defense responses and to induce resistance against B. cinerea in grapevine (Vitis vinifera; Varnier et al., 2009). They also participate to biocontrol activity of the plant beneficial bacteria Pseudomonas aeruginosa PNA1 against oomycetes (Perneel et al., 2008). However, the signaling pathways used by RLs to stimulate plant innate immunity are not known. To gain more insights into RL-induced MTI, we investigated RL-triggered defense responses and resistance to the necrotrophic fungus B. cinerea, the biotroph oomycete H. arabidopsidis, and the hemibiotroph bacterium Pst in Arabidopsis. Our results show that RLs trigger an innate immune response in Arabidopsis that protects the plant against these different lifestyle pathogens. We demonstrate that RL-mediated resistance involves separated signaling sectors that depend on the type of pathogen. In plants challenged by RLs, SA has a central role and participates to the restriction of the three pathogens. ET is fully involved in RL-induced resistance to the biotrophic oomycete and to the hemibiotrophic bacterium whereas JA is essential for the resistance to the necrotrophic fungus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号