首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Shiga toxin-producing Escherichia coli (STEC) are frequent causes of severe human diseases ranging from diarrhea to hemolytic uremic syndrome. The existing strategy for detection of STEC relies on the unique sorbitol-negative fermentation property of the O157 strains, the most commonly identified serotype has been E. coli O157. It is becoming increasingly evident, however, that numerous non-O157 STEC serotypes also cause outbreaks and severe illnesses. It is necessary to have new methods that are capable of detecting all STEC strains.

Methods and Findings

Here we describe the development of a sandwich ELISA assay for detecting both O157 and non-O157 STECs by incorporating a novel polyclonal antibody (pAb) against Stx2. The newly established immunoassay was capable of detecting Stx2a spiked in environmental samples with a limit of detection between 10 and 100 pg/mL in soil and between 100 and 500 pg/mL in feces. When applied to 36 bacterial strains isolated from human and environmental samples, this assay detected Stx2 in all strains that were confirmed to be stx2-positive by real-time PCR, demonstrating a 100% sensitivity and specificity.

Conclusions

The sandwich ELISA developed in this study will enable any competent laboratory to identify and characterize Stx2-producing O157 and non-O157 strains in human and environmental samples, resulting in rapid diagnosis and patient care. The results of epitope mapping from this study will be useful for further development of a peptide-based antibody and vaccine.  相似文献   

2.

Background

Stx toxin is a member of the AB5 family of bacterial toxins: the active A subunit has N-glycosidase activity against 28S rRNA, resulting in inhibition of protein synthesis in eukaryotic cells, and the pentamer ligand B subunits (StxB) bind to globotria(tetra)osylceramide receptors (Gb3/Gb4) on the cell membrane. Shiga toxin-producing Escherichia coli strains (STEC) may produce Stx1 and/or Stx2 and variants. Strains carrying Stx2 are considered more virulent and related to the majority of outbreaks, besides being usually associated with hemolytic uremic syndrome in humans. The development of tools for the detection and/or neutralization of these toxins is a turning point for early diagnosis and therapeutics. Antibodies are an excellent paradigm for the design of high-affinity, protein-based binding reagents used for these purposes.

Methods and Findings

In this work, we developed two recombinant antibodies; scFv fragments from mouse hybridomas and Fab fragments by phage display technology using a human synthetic antibody library. Both fragments showed high binding affinity to Stx2, and they were able to bind specifically to the GKIEFSKYNEDDTF region of the Stx2 B subunit and to neutralize in vitro the cytotoxicity of the toxin up to 80%. Furthermore, the scFv fragments showed 79% sensitivity and 100% specificity in detecting STEC strains by ELISA.

Conclusion

In this work, we developed and characterized two recombinant antibodies against Stx2, as promising tools to be used in diagnosis or therapeutic approaches against STEC, and for the first time, we showed a human monovalent molecule, produced in bacteria, able to neutralize the cytotoxicity of Stx2 in vitro.  相似文献   

3.
Imamovic L  Muniesa M 《PloS one》2012,7(2):e32393

Background

The bacteriophage life cycle has an important role in Shiga toxin (Stx) expression. The induction of Shiga toxin-encoding phages (Stx phages) increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA.

Methodology/Principal Findings

The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA) were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction.

Conclusions/Significance

Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC) and in the emergence of new pathogenic strains.  相似文献   

4.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC) strains isolated in Mangalore, India, were characterised by bead-enzyme-linked immunosorbent assay (bead-ELISA), Vero cell cytotoxicity assay, PCR and colony hybridisation for the detection of stx1 and stx2 genes. Four strains from seafood, six from beef and one from a clinical case of bloody diarrhoea were positive for Shiga toxins Stx1 and Stx2 and also for stx1and stx2 genes. The seafood isolates produced either Stx2 alone or both Stx1 and Stx2, while the beef isolates produced Stx1 alone. The stx1 gene of all the beef STEC was found to be of recently reported stx1c type. All STEC strains and one non-STEC strain isolated from clam harboured EHEC-hlyA. Interestingly, though all STEC strains were negative for eae gene, two STEC strains isolated from seafood and one from a patient with bloody diarrhoea possessed STEC autoagglutinating adhesion (saa) gene, recently identified as a gene encoding a novel autoagglutinating adhesion.  相似文献   

6.

Background

Immunologically distinct forms of Shiga toxin (Stx1 and Stx2) display different potencies and disease outcomes, likely due to differences in host cell binding. The glycolipid globotriaosylceramide (Gb3) has been reported to be the receptor for both toxins. While there is considerable data to suggest that Gb3 can bind Stx1, binding of Stx2 to Gb3 is variable.

Methodology

We used isothermal titration calorimetry (ITC) and enzyme-linked immunosorbent assay (ELISA) to examine binding of Stx1 and Stx2 to various glycans, glycosphingolipids, and glycosphingolipid mixtures in the presence or absence of membrane components, phosphatidylcholine, and cholesterol. We have also assessed the ability of glycolipids mixtures to neutralize Stx-mediated inhibition of protein synthesis in Vero kidney cells.

Results

By ITC, Stx1 bound both Pk (the trisaccharide on Gb3) and P (the tetrasaccharide on globotetraosylceramide, Gb4), while Stx2 did not bind to either glycan. Binding to neutral glycolipids individually and in combination was assessed by ELISA. Stx1 bound to glycolipids Gb3 and Gb4, and Gb3 mixed with other neural glycolipids, while Stx2 only bound to Gb3 mixtures. In the presence of phosphatidylcholine and cholesterol, both Stx1 and Stx2 bound well to Gb3 or Gb4 alone or mixed with other neutral glycolipids. Pre-incubation with Gb3 in the presence of phosphatidylcholine and cholesterol neutralized Stx1, but not Stx2 toxicity to Vero cells.

Conclusions

Stx1 binds primarily to the glycan, but Stx2 binding is influenced by residues in the ceramide portion of Gb3 and the lipid environment. Nanomolar affinities were obtained for both toxins to immobilized glycolipids mixtures, while the effective dose for 50% inhibition (ED50) of protein synthesis was about 10−11 M. The failure of preincubation with Gb3 to protect cells from Stx2 suggests that in addition to glycolipid expression, other cellular components contribute to toxin potency.  相似文献   

7.
There is considerable diversity among Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria, and only a subset of these organisms are thought to be human pathogens. The characteristics that distinguish STEC bacteria that give rise to human disease are not well understood. Stxs, the principal virulence determinants of STEC, are thought to account for hemolytic-uremic syndrome (HUS), a severe clinical consequence of STEC infection. Stxs are typically bacteriophage encoded, and their production has been shown to be enhanced by prophage-inducing agents such as mitomycin C in a limited number of clinical STEC isolates. Low iron concentrations also enhance Stx production by some clinical isolates; however, little is known regarding whether and to what extent these stimuli regulate Stx production by STEC associated with cattle, the principal environmental reservoir of STEC. In this study, we investigated whether toxin production differed between HUS- and bovine-associated STEC strains. Basal production of Stx by HUS-associated STEC exceeded that of bovine-associated STEC. In addition, following mitomycin C treatment, Stx2 production by HUS-associated STEC was significantly greater than that by bovine-associated STEC. Unexpectedly, mitomycin C treatment had a minimal effect on Stx1 production by both HUS- and bovine-associated STEC. However, Stx1 production was induced by growth in low-iron medium, and induction was more marked for HUS-associated STEC than for bovine-associated STEC. These observations reveal that disease-associated and bovine-associated STEC bacteria differ in their basal and inducible Stx production characteristics.  相似文献   

8.
A rapid and sensitive two‐step time‐resolved fluorescence immunoassay (TRFIA) was developed for the detection of Shiga toxin 2 (Stx2) and its variants in Shiga toxin‐producing Escherichia coli (STEC) strains. In sandwich mode, a monoclonal antibody against Stx2 was coated on a microtiter plate as a capture antibody. A tracer antibody against Stx2 labeled with europium(III) (Eu3+) chelate was then used as a detector, followed by fluorescence measurements using time‐resolved fluorescence. The sensitivity of Stx2 detection was 0.038 ng/ml (dynamic range, 0.1–1000 ng/ml). The intra‐ and inter‐assay coefficients of variation of the assay were 3.2% and 3.6%, respectively. The performance of the established assay was evaluated using culture supernatants of STEC strains, and the results were compared to those of a common HRP (horseradish peroxidase) labeling immunosorbent assay. A polymerase chain reaction (PCR) for the detection of genes encoding Stx1 and Stx2 was used as the reference for comparison. Correlation between the Stx2‐specific TRFIA and PCR was calculated by the use of kappa statics, exhibiting a perfect level of agreement. The availability of the sensitive and reliable Stx2‐specific TRFIA method for quantifying Stx2 and its variants in STEC strains will complement bacteria isolation‐based platform and aid in the accurate and prompt diagnosis of STEC infections.  相似文献   

9.

Background

Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor.

Methods

The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied.

Results

The human STEC/ETEC strains clustered with strains representing ETEC, STEC, enteroaggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only.

Conclusions

This study shows that pathogroup-associated virulence genes of different E. coli can co-exist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.  相似文献   

10.
Haemolytic uraemic syndrome caused by Shiga toxin‐producing E. coli (STEC) is dependent on release of Shiga toxins (Stxs) during intestinal infection and subsequent absorption into the bloodstream. An understanding of Stx‐related events in the human gut is limited due to lack of suitable experimental models. In this study, we have used a vertical diffusion chamber system with polarized human colon carcinoma cells to simulate the microaerobic (MA) environment in the human intestine and investigate its influence on Stx release and translocation during STEC O157:H7 and O104:H4 infection. Stx2 was the major toxin type released during infection. Whereas microaerobiosis significantly reduced bacterial growth as well as Stx production and release into the medium, Stx translocation across the epithelial monolayer was enhanced under MA versus aerobic conditions. Increased Stx transport was dependent on STEC infection and occurred via a transcellular pathway other than macropinocytosis. While MA conditions had a similar general effect on Stx release and absorption during infection with STEC O157:H7 and O104:H4, both serotypes showed considerable differences in colonization, Stx production, and Stx translocation which suggest alternative virulence strategies. Taken together, our study suggests that the MA environment in the human colon may modulate Stx‐related events and enhance Stx absorption during STEC infection.  相似文献   

11.
Calves become infected with Shiga toxin-producing Escherichia coli (STEC) early in life, which frequently results in long-term shedding of the zoonotic pathogen. Little is known about the animals'' immunological status at the time of infection. We assessed the quantity and dynamics of maternal and acquired antibodies to Shiga toxins (Stx1 and Stx2), the principal STEC virulence factors, in a cohort of 27 calves. Fecal and serum samples were taken repeatedly from birth until the 24th week of age. Sera, milk, and colostrums of dams were also assessed. STEC shedding was confirmed by detection of stx in fecal cultures. Stx1- and Stx2-specific antibodies were quantified by Vero cell neutralization assay and further analyzed by immunoblotting. By the eighth week of age, 13 and 15 calves had at least one stx1-type and at least one stx2-type positive culture, respectively. Eleven calves had first positive cultures only past that age. Sera and colostrums of all dams and postcolostral sera of all newborn calves contained Stx1-specific antibodies. Calf serum titers decreased rapidly within the first 6 weeks of age. Only five calves showed Stx1-specific seroconversion. Maternal and acquired Stx1-specific antibodies were mainly directed against the StxA1 subunit. Sparse Stx2-specific titers were detectable in sera and colostrums of three dams and in postcolostral sera of their calves. None of the calves developed Stx2-specific seroconversion. The results indicate that under natural conditions of exposure, first STEC infections frequently coincide with an absence of maternal and acquired Stx-specific antibodies in the animals'' sera.Shiga toxin-producing Escherichia coli (STEC), also known as enterohemorrhagic E. coli (EHEC), is a food-borne pathogen which can evoke life-threatening diseases, such as hemorrhagic colitis and hemolytic-uremic syndrome, in humans (26). Cattle and other ruminants are primary reservoirs for STEC serotypes that are typically associated with human disease, e.g., O157:H7. Calves become infected with STEC early in life via horizontal or vertical transmission (55) and do not develop clinical signs of infection but may shed the bacteria for several months and in great quantities (15, 64). Reduction of persistent STEC shedding in cattle would contribute greatly to preventing human STEC infections.Evidence that vaccination may be a sensible control option has come from studies in which cattle shed E. coli O157 less frequently following immunization with STEC O157:H7 antigens (48). However, several other studies deploying various STEC antigens produced conflicting data regarding the efficacy of vaccines to reduce or prevent STEC shedding by cattle (16, 61). Identification of candidate antigens is hampered by the limited knowledge of the immune responses occurring after bovine STEC infections, their kinetics, and their meaning for the control of STEC shedding. Serological responses against a variety of antigens following E. coli O157 colonization have repeatedly been reported. Infected animals frequently develop antibodies against STEC lipopolysaccharides (LPS), e.g., O157 LPS (25). Such antibodies inhibit STEC O157 adhesion to cells in vitro (45), but shedding is not affected by serum and mucosal O157 titers in vivo (25). Mucosal immune responses are directed mainly against membrane-associated and type III secreted STEC proteins (40). Type III secreted antigens are relatively conserved among non-O157 STEC serotypes and were assumed to be broadly cross-protective (48). Antibodies against Tir (translocated intimin receptor), intimin, and Esps (E. coli secreted proteins) A and B are detectable in calves and adult cattle after natural and experimental STEC infections or after vaccination based on these antigens (9, 16, 48, 60). Nevertheless, they do not limit the magnitude or duration of STEC shedding under field conditions (61), where cattle are confronted with a variety of different STEC strains (19, 55).Shiga toxins (Stx) are potent protein cytotoxins and represent the principal STEC virulence factors in the pathogenesis of human infections (49). Cumulating evidence shows that Stx act as immunomodulating agents during bovine STEC infections. Stx1 alters the cytokine expression pattern in mucosal macrophages (56) and intraepithelial lymphocytes (38) and suppresses the activation and proliferation of mucosal and peripheral lymphocytes in vitro (36, 37). The development of an adaptive cellular immune response is significantly delayed following experimental infection of calves with Stx2-producing STEC O157:H7 compared to that in animals inoculated with Stx-negative E. coli O157:H7 (22). In vitro and in vivo studies showed that Stx act during the early phases of immune activation rather than downregulating an established immunity (22, 57). Consequently, Stx may principally exhibit their immunomodulating activity upon first STEC infection of hitherto immunologically naïve animals.Antibodies against Stx may be essential to protect cattle from Stx-mediated immunosuppression, but only when they are present in sufficient amounts at the time of initial STEC infection. Stx-specific antibodies are detectable in sera and colostrums of naturally infected cows (6, 47). In contrast, naturally exposed calves mostly lack Stx-specific antibodies, and antibodies are barely inducible by repeated experimental STEC infections (22, 25). Maternal antibodies were considered to interfere with the development of an acquired anti-Stx immune response in calves (25), but mother-to-offspring transfer of such antibodies has not been confirmed to date. The objectives of this study were to investigate the dynamics of maternal Stx1- and Stx2-specific antibodies in calves held under conditions of natural exposure and to determine the age at the onset of acquired Stx immunity relative to the time of initial STEC infection.  相似文献   

12.

Background

Both O157 and non-O157 Shiga toxin - producing Escherichia coli (STECs) cause serious human disease outbreaks through the consumption of contaminated foods. Cattle are considered the main reservoir but it is unclear how STECs affect mature animals. Neonatal calves are the susceptible age class for STEC infections causing severe enteritis. In an earlier study, we determined that mycotoxins and STECs were part of the disease complex for dairy cattle with Jejunal Hemorrhage Syndrome (JHS). For STECs to play a role in the development of JHS, we hypothesized that STEC colonization should also be evident in beef cattle with JHS. Aggressive medical and surgical therapies are effective for JHS, but rely on early recognition of clinical signs for optimal outcomes suggesting that novel approaches must be developed for managing this disease. The main objective of this study was to confirm that mouldy feeds, mycotoxins and STEC colonization were associated with the development of JHS in beef cattle.

Results

Beef cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium poae, F. verticillioides, F. sporotrichioides, Penicillium roqueforti and Aspergillus fumigatus. Mixtures of STECs colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood collected from the lumen of the hemorrhaged jejunum. Feed extracts containing mycotoxins were toxic to enterocytes and 0.1% of a prebiotic, Celmanax Trademark, removed the cytotoxicity in vitro. The inclusion of a prebiotic in the care program for symptomatic beef calves was associated with 69% recovery.

Conclusions

The current study confirmed that STECs and mycotoxins are part of the disease complex for JHS in beef cattle. Mycotoxigenic fungi are only relevant in that they produce the mycotoxins deposited in the feed. A prebiotic, Celmanax Trademark, acted as a mycotoxin binder in vitro and interfered with the progression of disease.  相似文献   

13.
AIMS: To determine the suitability of eight different commercial broth media for Shiga toxin (Stx) production. METHODS AND RESULTS: Shiga toxin-producing Escherichia coli (STEC) strains producing Stx1 or Stx2 were grown at 37 degrees C (250 rev min(-1)) for 24 h in brain heart infusion broth, E. coli broth, Evans medium, Luria-Bertani broth, Penassay broth, buffered-peptone water, syncase broth and trypticase soy broth. Toxin production was measured by enzyme-linked immunosorbent assay (ELISA) in polymyxin-treated cell pellets and/or supernatants of cultures, ELISA optical densities reached 1 when isolates were grown for 2-4 h in E. coli broth in the presence of antibiotic. Besides, a collection of STEC-expressing Stx strains was evaluated and the Stx production was assayed in the supernatants and in polymyxin-treated pellets of bacterial growth after 4 h of cultivation in E. coli broth in the presence of antibiotic. CONCLUSIONS: The most suitable medium for Stx production was E. coli broth when the bacterial isolates were grown for 4 h in the presence of ciprofloxacin and the Stx production is detected in the supernatant. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents the first comprehensive comparison of different broth media with regard to Stx production to establish optimal culture conditions for STEC detection in routine diagnostic laboratories.  相似文献   

14.
Shiga toxin-producing Escherichia coli (STEC) in the environment has been reported frequently. However, robust detection of STEC in environmental samples remains difficult because the numbers of bacteria in samples are often below the detection threshold of the method. We developed a novel and sensitive immuno-PCR (IPCR) assay for the detection of Shiga toxin 2 (Stx2) and Stx2 variants. The assay involves immunocapture of Stx2 at the B subunit and real-time PCR amplification of a DNA marker linked to a detection antibody recognizing the Stx2 A subunit. The qualitative detection limit of the assay is 0.1 pg/ml in phosphate-buffered saline (PBS), with a quantification range of 10 to 100,000 pg/ml. The IPCR method was 10,000-fold more sensitive than an analogue conventional enzyme-linked immunosorbent assay (ELISA) in PBS. Although the sensitivity of the IPCR for detection of Stx2 was affected by environmental sample matrices of feces, feral swine colons, soil, and water from watersheds, application of the IPCR assay to 23 enriched cultures of fecal, feral swine colon, soil, and watershed samples collected from the environment revealed that the IPCR detected Stx2 in all 15 samples that were shown to be STEC positive by real-time PCR and culture methods, demonstrating a 100% sensitivity and specificity. The modification of the sandwich IPCR we have described in this study will be a sensitive and specific screening method for evaluating the occurrence of STEC in the environment.  相似文献   

15.
A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli   总被引:2,自引:0,他引:2  
A sensitive and specific PCR-ELISA was developed to detect Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in food. The assay was based on the incorporation of digoxigenin-labeled dUTP and a biotin-labeled primer specific for Shiga toxin genes during PCR amplification. The labeled PCR products were bound to streptavidin-coated wells of a microtiter plate and detected by an ELISA. The specificity of the PCR was determined using 39 bacterial strains, including STEC, enteropathogenic E. coli, E. coli K12, and Salmonella. All of the STEC strains were positive, and non-STEC organisms were negative. The ELISA detecting system was able to increase the sensitivity of the PCR assay by up to 100-fold, compared with a conventional gel electrophoresis. The detection limit of the PCR-ELISA was 0.1-10 CFU dependent upon STEC serotypes, and genotypes of Shiga toxins. With the aid of a simple DNA extraction system, PrepMan, the PCR-ELISA was able to detect ca. 10(5) CFU of STEC per gram of ground beef without any culture enrichment. The entire procedure took about 6 h. Because of its microtiter plate format, PCR-ELISA is particularly suitable for large-scale screening and compatible with future automation.  相似文献   

16.

Introduction

Strains of Shiga-toxin producing Escherichia coli O157 (STEC O157) are important foodborne pathogens in humans, and outbreaks of illness have been associated with consumption of undercooked beef. Here, we determine the most effective intervention strategies to reduce the prevalence of STEC O157 contaminated beef carcasses using a modelling approach.

Method

A computational model simulated events and processes in the beef harvest chain. Information from empirical studies was used to parameterise the model. Variance-based global sensitivity analysis (GSA) using the Saltelli method identified variables with the greatest influence on the prevalence of STEC O157 contaminated carcasses. Following a baseline scenario (no interventions), a series of simulations systematically introduced and tested interventions based on influential variables identified by repeated Saltelli GSA, to determine the most effective intervention strategy.

Results

Transfer of STEC O157 from hide or gastro-intestinal tract to carcass (improved abattoir hygiene) had the greatest influence on the prevalence of contaminated carcases. Due to interactions between inputs (identified by Saltelli GSA), combinations of interventions based on improved abattoir hygiene achieved a greater reduction in maximum prevalence than would be expected from an additive effect of single interventions. The most effective combination was improved abattoir hygiene with vaccination, which achieved a greater than ten-fold decrease in maximum prevalence compared to the baseline scenario.

Conclusion

Study results suggest that effective interventions to reduce the prevalence of STEC O157 contaminated carcasses should initially be based on improved abattoir hygiene. However, the effect of improved abattoir hygiene on the distribution of STEC O157 concentration on carcasses is an important information gap—further empirical research is required to determine whether reduced prevalence of contaminated carcasses is likely to result in reduced incidence of STEC O157 associated illness in humans. This is the first use of variance-based GSA to assess the drivers of STEC O157 contamination of beef carcasses.  相似文献   

17.
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event.  相似文献   

18.

Background

Shiga-like toxin 2 (Stx2) is one of the most important virulence factors in enterohaemorrhagic Escherichia coli (E. coli) strains such as O157H7. Subtypes of Stx2 are diverse with respect to their sequence, toxicity, and distribution. The most diverse Stx2 subtype, Stx2f, is difficult to detect immunologically, but is becoming more frequently associated with human illness.

Methods and Findings

A purification regimen was developed for the purification of Stx2f involving cation exchange, hydrophobic interaction, anion exchange, and gel filtration. The molecular weight of Stx2f B-subunit was approximately 5 kDa, which appeared significantly smaller than that of Stx2a (6 kDa) on a SDS-PAGE gel, although the size of the A subunit was similar to Stx2a (30 kDa). Stx2f was shown to be active in both cell-free and cell-based assays. The 50% cytotoxic dose in Vero cells was 3.4 or 1.7 pg (depending on the assay conditions), about 3–5 times higher than the archetypical Stx2a, while the activity of Stx2f and Stx2a in a cell-free rabbit reticulocyte system was similar. Stx2f bound to both globotriose-lipopolysaccharide (Gb3-LPS) and globotetraose-LPS (Gb4-LPS, mimics for globotriaosylceramide and globotetraosylceramide, respectively), but its ability to bind Gb4-LPS was much stronger than Stx2a. Stx2f was also much more stable at low pH and high temperature compared to Stx2a, suggesting the toxin itself may survive harsher food preparation practices.

Conclusions

Here, we detail the purification, biochemical properties, and toxicity of Stx2f, from an E. coli strain isolated from a feral pigeon. Information obtained in this study will be valuable for characterizing Stx2f and explaining the differences of Stx2a and Stx2f in host specificity and cytotoxicity.  相似文献   

19.
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens whose ability to produce Shiga toxin (Stx) is due to integration of Stx-encoding lambdoid bacteriophages. These Stx phages are both genetically and morphologically heterogeneous, and here we report the design and validation of a PCR-based multilocus typing scheme. PCR primer sets were designed for database variants of a range of key lambdoid bacteriophage genes and applied to control phages and 70 stx+ phage preparations induced from a collection of STEC isolates. The genetic diversity residing within these populations could be described, and observations were made on the heterogeneity of individual gene targets, including the unexpected predominance of short-tailed phages with a highly conserved tail spike protein gene. Purified Stx phages can be profiled using this scheme, and the lambdoid phage-borne genes in induced STEC preparations can be identified as well as those residing in the noninducible prophage complement. The ultimate goal is to enable robust and realistically applicable epidemiological studies of Stx phages and their traits. The impact of Stx phage on STEC epidemiology is currently unknown.  相似文献   

20.

Background

The serine protease autotransporter EspP is a proposed virulence factor of Shiga toxin-producing Escherichia coli (STEC). We recently distinguished four EspP subtypes (EspPα, EspPβ, EspPγ, and EspPδ), which display large differences in transport and proteolytic activities and differ widely concerning their distribution within the STEC population. The mechanisms underlying these functional variations in EspP subtypes are, however, unknown.

Methodology/Principal Findings

The structural basis of proteolytic and autotransport activity was investigated using transposon-based linker scanning mutagenesis, site-directed mutagenesis and structure-function analysis derived from homology modelling of the EspP passenger domain. Transposon mutagenesis of the passenger domain inactivated autotransport when pentapeptide linker insertions occurred in regions essential for overall correct folding or in a loop protruding from the β-helical core. Loss of proteolytic function was limited to mutations in Domain 1 in the N-terminal third of the EspP passenger. Site-directed mutagenesis demonstrated that His127, Asp156 and Ser263 in Domain 1 form the catalytic triad of EspP.

Conclusions/Significance

Our data indicate that in EspP i) the correct formation of the tertiary structure of the passenger domain is essential for efficient autotransport, and ii) an elastase-like serine protease domain in the N-terminal Domain 1 is responsible for the proteolytic phenotype. Lack of stabilizing interactions of Domain 1 with the core structure of the passenger domain ablates proteolytic activity in subtypes EspPβ and EspPδ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号