首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bio-signal applications, classification performance depends greatly on feature extraction, which is also the case for electroencephalogram (EEG) based applications. Feature extraction, and consequently classification of EEG signals is not an easy task due to their inherent low signal-to-noise ratios and artifacts. EEG signals can be treated as the output of a non-linear dynamical (chaotic) system in the human brain and therefore they can be modeled by their dimension values. In this study, the variance fractal dimension technique is suggested for the modeling of movement-related potentials (MRPs). Experimental data sets consist of EEG signals recorded during the movements of right foot up, lip pursing and a simultaneous execution of these two tasks. The experimental results and performance tests show that the proposed modeling method can efficiently be applied to MRPs especially in the binary approached brain computer interface applications aiming to assist severely disabled people such as amyotrophic lateral sclerosis patients in communication and/or controlling devices.  相似文献   

2.
The influence of eye movement-related artifacts on electroencephalography (EEG) signals of human subjects, who were requested to perform a direction or viewing area dependent saccade task, was investigated by using a simultaneous recording with ocular potentials as electro-oculography (EOG). In the past, EOG artifact removals have been studied in tasks with a single fixation point in the screen center, with less attention to the sensitivity of cornea-retinal dipole orientations to the EEG head map. In the present study, we hypothesized the existence of a systematic EOG influence that differs according to coupling conditions of eye-movement directions with viewing areas including different fixation points. The effect was validated in the linear regression analysis by using 12 task conditions combining horizontal/vertical eye-movement direction and three segregated zones of gaze in the screen. In the first place, event-related potential topographic patterns were analyzed to compare the 12 conditions and propagation coefficients of the linear regression analysis were successively calculated in each condition. As a result, the EOG influences were significantly different in a large number of EEG channels, especially in the case of horizontal eye-movements. In the cross validation, the linear regression analysis using the appropriate dataset of the target direction/viewing area combination demonstrated an improved performance compared with the traditional methods using a single fixation at the center. This result may open a potential way to improve artifact correction methods by considering the systematic EOG influence that can be predicted according to the view angle such as using eye-tracker systems.  相似文献   

3.
A procedure is described for making an implantable electrode array for recording EMG activity in muscles of awake, unrestrained animals (rats and cats) at rest, during rhythmic activity and in response to various reflexogenic stimuli. The electrode array consists of a percutaneous connector (covered with Dow-Corning Silastic Medical Adhesive), steel wire spiral leads contained in silicone tubing and silicone plate probes with platinum electrodes. These plate probes can be fixed either to the bone underneath the muscle, slipped under the fascia, or fixed between muscles. EMG records are presented of postural activity and ambulation in rats, mastication in cats and unilateral and bilateral spinal and supraspinal reflex responses in rat hind limb muscles up to 6 months after implantation. The advantages (and drawbacks) of this technique and its possible uses in neurophysiology are enumerated in the discussion.  相似文献   

4.
Oscillatory brain activities are considered to reflect the basis of rhythmic changes in transmission efficacy across brain networks and are assumed to integrate cognitive neural processes. Transcranial alternating current stimulation (tACS) holds the promise to elucidate the causal link between specific frequencies of oscillatory brain activity and cognitive processes. Simultaneous electroencephalography (EEG) recording during tACS would offer an opportunity to directly explore immediate neurophysiological effects of tACS. However, it is not trivial to measure EEG signals during tACS, as tACS creates a huge artifact in EEG data. Here we explain how to set up concurrent tACS-EEG experiments. Two necessary considerations for successful EEG recording while applying tACS are highlighted. First, bridging of the tACS and EEG electrodes via leaking EEG gel immediately saturates the EEG amplifier. To avoid bridging via gel, the viscosity of the EEG gel is the most important parameter. The EEG gel must be viscous to avoid bridging, but at the same time sufficiently fluid to create contact between the tACS electrode and the scalp. Second, due to the large amplitude of the tACS artifact, it is important to consider using an EEG system with a high resolution analog-to-digital (A/D) converter. In particular, the magnitude of the tACS artifact can exceed 100 mV at the vicinity of a stimulation electrode when 1 mA tACS is applied. The resolution of the A/D converter is of importance to measure good quality EEG data from the vicinity of the stimulation site. By following these guidelines for the procedures and technical considerations, successful concurrent EEG recording during tACS will be realized.  相似文献   

5.
Sodium valproate(VPA), ethosuximide(ESM), 200 mg/kg ip and flunarizine (FLU) 5 or 10 mg/kg ip were first administered independently to rats in order to study their effects on behavioural and EEG aspects of spike and wave discharges (SWDs) induced by y- hydroxybutyrate (GHB,100 mg/kg ip). GHB treated rats show behavioural changes and concomitant repetitive EEG episodes of 7 to 9 Hz SWDs, mimicking human absence seizures (AS), and can be used as a pharmacological model. The number and duration of SWDs were calculated for 1 hr from the EEG and were parameters for drug evaluation. VPA and ESM at 200 mg/kg, significantly reduced SWD number and duration/hr, while FLU showed significant reduction only at 10 but not at 5 mg/kg. Combination of FLU, 10 mg/kg with either VPA or ESM showed significant reduction of SWD number and duration, suggesting an additive effect of the anti-absence agents with the calcium channel blocker, FLU, on experimental absence seizures in rats.  相似文献   

6.
Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3-12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning.  相似文献   

7.

Background

Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group.

Methods

The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8–12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively.

Results

The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8–12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group.

Conclusions

Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
  相似文献   

8.
Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol.  相似文献   

9.
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.  相似文献   

10.
A new head exposure system for double blinded human provocation studies, which requires EEG recording during exposure with GSM900- and UMTS-like signals has been developed and dosimetrically evaluated. The system uses planar patch antennas fixed at 65 mm distance from the subject's head by a special headset, which provides minimum impairment of the test subjects and ensures an almost constant position of the antennas with respect to the head, even in case of head movements. Compared to exposure concepts operating small antennas in close proximity to the head, the concept of planar antennas at a certain distance from the head produces a much more homogeneous SAR distribution in the temporal and parietal lobe of the brain. At the same time the resulting uncertainty of exposure due to variations in head size, variations of the dielectric properties of tissues and unavoidable small changes of the antenna's position with respect to the head, is reduced to the order of approximately 3 dB, which is a significant improvement to comparable head exposure systems reported in literature in the past. To avoid electromagnetic interference on the EEG recording caused by the incident RF-field an appropriate double-shielded filter circuit has been developed. Furthermore, the effect of the presence of the sintered Ag/AgCl EEG electrodes and electrode wires on the SAR distribution inside the head has been investigated and was found to be minimal if the electrode wires are arranged orthogonal to the incident electric field vector. EEG electrode arrangement parallel to the incident field vector, however, might cause drastic changes in the SAR distribution inside the head.  相似文献   

11.
A total of 12 Fischer rats was prepared surgically for chronic EEG recording from cortical and subcortical sites. Most rats, within 2 to 9 weeks after electrode implantation, developed polyspike activity in cortical and subcortical recordings that were without motor manifestations. Six of these rats, chronically treated po with Δ9-tetrahydrocannabinol (Δ9-THC) 10 mg/kg exhibited acute EEG changes with more frequent occurrence of EEG desynchronization and polyspike activity. On day 109 one of 6 rats displayed consulsive activity, with jerky movements of the head and paws, characteristics of Δ9-THC neurotoxicity. EEG alterations concomitant with motor signs included bursts of spikes of approximately 0.2 sec that occurred in subcortical, but not in cortical, recordings. It is concluded that in the Fischer rat acute and chronic treatment with Δ9-THC facilitated the occurrence of surgically-induced “polyspike” activity while chronic treatment caused occasional transient subcortical spike bursts with concomitant motor manifestations.  相似文献   

12.
The social transmission of food preferences(STFP) is a behavioural task of olfactory memory, in which an observer rat learns safe food odours from a demonstrator rat, and shows preference for this odour in a subsequent choice test. However, previous studies have failed to detect the transmission of information about food of potential danger and food aversion using STFP test. In this study, we tested how demonstrators' health affects the exchange of odour information and whether observers can learn danger information from an unhealthy demonstrator. As expected, the observer rat formed an odour preference after interacting with a demonstrator rat that had just eaten food containing a new odour, however, odour preference rather than aversion was also formed after interacting with a demonstrator rat injected with LiCl(used to induce gastric malaise). Furthermore, anaesthetized demonstrator rats and half-anaesthetized demonstrator rats, which showed obvious motor deficits suggesting an unhealthy state, also socially transmitted food preferences to observers. These results suggest that the social transmission of food preferences task is independent of a demonstrators' health, and that information about dangerous foods cannot be transmitted using this behavioural task.  相似文献   

13.
14.
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (p<0.05). The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies.  相似文献   

15.
S Sangiah  D F Caldwell 《Life sciences》1988,42(15):1425-1429
Administration of a high dose of glucose (2.5 g/kg, i.p.) that is known to produce severe hyperglycemia in euglycemic rats suppressed rapid eye movement (REM) sleep time significantly during the first three hours of 8 hr total electroencephalogram (EEG) recording period. Co-administration of glucose (2.5 g/kg, i.p.) and a non-convulsive dose of insulin (1.0 I.U./kg, i.p.) produced a significant reduction in REM sleep time during 1st through 5th hour and an increase in slow-wave sleep (NREM) time in the 3rd and 4th hour of 8 hr total EEG recording period. However, awake, NREM and REM sleep time in the 8 hr total EEG recording period were unaffected by either glucose alone or glucose plus insulin treatments. These results strongly suggest that the insulin's effects on the sleep-awake cycle i.e. reduction in REM and a slight increase in NREM sleep times of rats is not due to indirect effects of insulin on the central nervous system via hypoglycemia as reported by us previously, but could possibly be due to its direct effects on brain chemistry of neurotransmitters such as serotonin, catecholamines and acetylcholine which are believed to modulate the sleep-awake cycle pattern in rats.  相似文献   

16.
A brief critical review of some primate behavioural recording techniques is presented. A new device and scoring system, from which frequency, duration, duration/frequency, and modified frequency data of a large number of behaviours can be obtained, is described using an adding machine and printout counter. Data collected using this system is illustrated. The system, factorially arranged, differentiates five behaviour types, six directions, mobility, contact, and reciprocity. Four types of reliability are estimated using films; intercorrelations and factor analyses are presented.  相似文献   

17.
Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked.In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.  相似文献   

18.
Sodium valproate (VPA) and flunarizine (FLU) administered individually and together were examined for their effects on behavioural, and EEG changes in the pentylenetetrazole (PTZ) induced rat model of absence seizures. PTZ, 20 mg/kg, i.p., produced behavioural staring and immobility with concomitant, repetitive 7 to 9 Hz spike/wave discharges (SWDs) in EEG, monitored continuously for 1 hr and thereafter, intermittently for 4 hr, post-vehicle/drug. The number and duration (sec) of SWDs/hr were the parameters used for evaluation of vehicle vs. drug effects in normal as well as rats made epileptogenic by repeated cortical stimulation. VPA, 200 mg/kg, i.p., produced a significant reduction in the number and duration of SWDs at 20 min only in epileptogenic rats, declining to non-significant levels at 60 min, whereas FLU, 10 mg/kg i.p. had no effect on either parameter. The combination of VPA and FLU produced a highly significant reduction of the number and duration of SWDs/h for 60 min in normal and epileptogenic rats. The results provide evidence for a synergistic effect of VPA and FLU in experimental absence seizures and possible potential benefit in pharmaco resistant seizures.  相似文献   

19.
This article describes a laser Doppler flowmetry (LDF) system that enables repeated measurements and thereby long-term followup of cortical cerebral blood flow (CBF) in awake and freely moving rats. The system consists of a specially designed flow probe adapter, a flow probe connector, and a LDF flow probe, which may thereby rotate through its own axis. During the experiment, the flow adapter is permanently mounted onto the rat's skull bone. A thin layer of skull bone is left intact at the site for cortical CBF measurements. The probe connector and the flow probe may be repeatedly detached and remounted to the adapter, which allows for cortical cerebral blood flow recording from exactly the same anatomical location. The laser Doppler flowmetry system enables stable cortical CBF recordings in the conscious rat while it moves freely in a bowl cage.  相似文献   

20.
During 0.1-0.2% of operations with general anesthesia, patients become aware during surgery. Unfortunately, pharmacologically paralyzed patients cannot seek attention by moving. Their attempted movements may however induce detectable EEG changes over the motor cortex. Here, methods from the area of movement-based brain-computer interfacing are proposed as a novel direction in anesthesia monitoring. Optimal settings for development of such a paradigm are studied to allow for a clinically feasible system. A classifier was trained on recorded EEG data of ten healthy non-anesthetized participants executing 3-second movement tasks. Extensive analysis was performed on this data to obtain an optimal EEG channel set and optimal features for use in a movement detection paradigm. EEG during movement could be distinguished from EEG during non-movement with very high accuracy. After a short calibration session, an average classification rate of 92% was obtained using nine EEG channels over the motor cortex, combined movement and post-movement signals, a frequency resolution of 4 Hz and a frequency range of 8-24 Hz. Using Monte Carlo simulation and a simple decision making paradigm, this translated into a probability of 99% of true positive movement detection within the first two and a half minutes after movement onset. A very low mean false positive rate of <0.01% was obtained. The current results corroborate the feasibility of detecting movement-related EEG signals, bearing in mind the clinical demands for use during surgery. Based on these results further clinical testing can be initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号