首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生态代谢组学研究进展   总被引:7,自引:1,他引:6  
赵丹  刘鹏飞  潘超  杜仁鹏  葛菁萍 《生态学报》2015,35(15):4958-4967
代谢组学指某一生物系统中产生的或已存在的代谢物组的研究,以质谱和核磁共振技术为分析平台,以信息建模与系统整合为目标。随着代谢组学中的研究方法与技术成为生态学研究的有力工具,生态代谢组学概念应运而生,即研究某一个生物体对环境变化的代谢物组水平的响应。理清代谢组学与生态代谢组学学科发展的脉络,综述代谢组学研究中的常用技术及其优势与局限性,论述代谢组学技术在生态学研究中的应用现状,展望代谢组学技术与其他系统生物学组学技术的结合在生态学中的应用前景,提出生态代谢组学研究者未来要完成的任务和面对的挑战。  相似文献   

2.
Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5?mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.  相似文献   

3.
We discovered that serious issues could arise that may complicate interpretation of metabolomic data when identical samples are analyzed at more than one NMR facility, or using slightly different NMR parameters on the same instrument. This is important because cross-center validation metabolomics studies are essential for the reliable application of metabolomics to clinical biomarker discovery. To test the reproducibility of quantified metabolite data at multiple sites, technical replicates of urine samples were assayed by 1D-1H-NMR at the University of Alberta and the University of Michigan. Urine samples were obtained from healthy controls under a standard operating procedure for collection and processing. Subsequent analysis using standard statistical techniques revealed that quantitative data across sites can be achieved, but also that previously unrecognized NMR parameter differences can dramatically and widely perturb results. We present here a confirmed validation of NMR analysis at two sites, and report the range and magnitude that common NMR parameters involved in solvent suppression can have on quantitated metabolomics data. Specifically, saturation power levels greatly influenced peak height intensities in a frequency-dependent manner for a number of metabolites, which markedly impacted the quantification of metabolites. We also investigated other NMR parameters to determine their effects on further quantitative accuracy and precision. Collectively, these findings highlight the importance of and need for consistent use of NMR parameter settings within and across centers in order to generate reliable, reproducible quantified NMR metabolomics data.  相似文献   

4.
Nuclear magnetic resonance (NMR) and Mass Spectroscopy (MS) are the two most common spectroscopic analytical techniques employed in metabolomics. The large spectral datasets generated by NMR and MS are often analyzed using data reduction techniques like Principal Component Analysis (PCA). Although rapid, these methods are susceptible to solvent and matrix effects, high rates of false positives, lack of reproducibility and limited data transferability from one platform to the next. Given these limitations, a growing trend in both NMR and MS-based metabolomics is towards targeted profiling or "quantitative" metabolomics, wherein compounds are identified and quantified via spectral fitting prior to any statistical analysis.?Despite the obvious advantages of this method, targeted profiling is hindered by the time required to perform manual or computer-assisted spectral fitting. In an effort to increase data analysis throughput for NMR-based metabolomics, we have developed an automatic method for identifying and quantifying metabolites in one-dimensional (1D) proton NMR spectra. This new algorithm is capable of using carefully constructed reference spectra and optimizing thousands of variables to reconstruct experimental NMR spectra of biofluids using rules and concepts derived from physical chemistry and NMR theory. The automated profiling program has been tested against spectra of synthetic mixtures as well as biological spectra of urine, serum and cerebral spinal fluid (CSF). Our results indicate that the algorithm can correctly identify compounds with high fidelity in each biofluid sample (except for urine). Furthermore, the metabolite concentrations exhibit a very high correlation with both simulated and manually-detected values.  相似文献   

5.
Environmental metabolomics can be described as the study of the interactions of living organisms with their natural environments at the metabolic level. Until recently, nuclear magnetic resonance (NMR) spectroscopy has been the primary bioanalytical tool for measuring metabolite levels in this field. While NMR has some specific advantages, the higher sensitivity offered by mass spectrometry (MS) is beginning to revolutionise our ability to probe environmental metabolomes. This review provides the first comprehensive overview of the use and capabilities of MS within environmental metabolomics. Its primary aims are to introduce environmental scientists to the range of MS approaches used in metabolomics and to highlight the breadth and diversity of environmental and ecological research conducted, from ecophysiology and ecotoxicology to chemical ecology. The review is structured around MS approaches: non-targeted gas chromatography–MS, non-targeted directed infusion MS, and both non-targeted and targeted liquid chromatography–MS. Each section begins with a brief introduction to the analytical method, including some advantages and limitations in the context of metabolomics research, and then exemplifies the use of that technique in environmental metabolomics. The review concludes with a discussion on some of the challenges that remain in MS based environmental metabolomics and provides recommendations for the path ahead.  相似文献   

6.
Metabolomics, pathway regulation, and pathway discovery   总被引:1,自引:0,他引:1  
Metabolomics is a data-based research strategy, the aims of which are to identify biomarker pictures of metabolic systems and metabolic perturbations and to formulate hypotheses to be tested. It involves the assay by mass spectrometry or NMR of many metabolites present in the biological system investigated. In this minireview, we outline studies in which metabolomics led to useful biomarkers of metabolic processes. We also illustrate how the discovery potential of metabolomics is enhanced by associating it with stable isotopic techniques.  相似文献   

7.

Environmental metabolomics can be described as the study of the interactions of living organisms with their natural environments at the metabolic level. Until recently, nuclear magnetic resonance (NMR) spectroscopy has been the primary bioanalytical tool for measuring metabolite levels in this field. While NMR has some specific advantages, the higher sensitivity offered by mass spectrometry (MS) is beginning to revolutionise our ability to probe environmental metabolomes. This review provides the first comprehensive overview of the use and capabilities of MS within environmental metabolomics. Its primary aims are to introduce environmental scientists to the range of MS approaches used in metabolomics and to highlight the breadth and diversity of environmental and ecological research conducted, from ecophysiology and ecotoxicology to chemical ecology. The review is structured around MS approaches: non-targeted gas chromatography–MS, non-targeted directed infusion MS, and both non-targeted and targeted liquid chromatography–MS. Each section begins with a brief introduction to the analytical method, including some advantages and limitations in the context of metabolomics research, and then exemplifies the use of that technique in environmental metabolomics. The review concludes with a discussion on some of the challenges that remain in MS based environmental metabolomics and provides recommendations for the path ahead.

  相似文献   

8.
NMR-based metabolomics requires robust automated methodologies, and the accuracy of NMR-based metabolomics data is greatly influenced by the reproducibility of data acquisition and processing methods. Effective water resonance signal suppression and reproducible spectral phasing and baseline traces across series of related samples are crucial for statistical analysis. We assess robustness, repeatability, sensitivity, selectivity, and practicality of commonly used solvent peak suppression methods in the NMR analysis of biofluids with respect to the automated processing of the NMR spectra and the impact of pulse sequence and data processing methods on the sensitivity of pattern recognition and statistical analysis of the metabolite profiles. We introduce two modifications to the excitation sculpting pulse sequence whereby the excitation solvent suppression pulse cascade is preceded by low-power water resonance presaturation pulses during the relaxation delay. Our analysis indicates that combining water presaturation with excitation sculpting water suppression delivers the most reproducible and information-rich NMR spectra of biofluids.  相似文献   

9.
MS has evolved as a critical component in metabolomics, which seeks to answer biological questions through large-scale qualitative and quantitative analyses of the metabolome. MS-based metabolomics techniques offer an excellent combination of sensitivity and selectivity, and they have become an indispensable platform in biology and metabolomics. In this minireview, various MS technologies used in metabolomics are briefly discussed, and future needs are suggested.  相似文献   

10.
Nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LCMS) are frequently used as technological platforms for metabolomics applications. In this study, the metabolic profiles of ripe fruits from 50 different tomato cultivars, including beef, cherry and round types, were recorded by both 1H NMR and accurate mass LC-quadrupole time-of-flight (QTOF) MS. Different analytical selectivities were found for these both profiling techniques. In fact, NMR and LCMS provided complementary data, as the metabolites detected belong to essentially different metabolic pathways. Yet, upon unsupervised multivariate analysis, both NMR and LCMS datasets revealed a clear segregation of, on the one hand, the cherry tomatoes and, on the other hand, the beef and round tomatoes. Intra-method (NMR–NMR, LCMS–LCMS) and inter-method (NMR–LCMS) correlation analyses were performed enabling the annotation of metabolites from highly correlating metabolite signals. Signals belonging to the same metabolite or to chemically related metabolites are among the highest correlations found. Inter-method correlation analysis produced highly informative and complementary information for the identification of metabolites, even in de case of low abundant NMR signals. The applied approach appears to be a promising strategy in extending the analytical capacities of these metabolomics techniques with regard to the discovery and identification of biomarkers and yet unknown metabolites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
代谢组学及其应用   总被引:18,自引:0,他引:18  
对代谢组学的概念、特性、发展历史做了简要介绍,综述了当前代谢组学研究中的数据采集、数据分析中采用的技术,及代谢组学在疾病诊断、药物毒性研究、植物和微生物等邻域的应用,并对代谢组学的发展作了展望。  相似文献   

12.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.  相似文献   

13.
This study aims to investigate the metabolic difference between male and female healthy adults using a combination of GC–MS and NMR metabolomics techniques. While metabolomics has shown wide applications in characterizing the status and progression of many diseases, physiological factors such as gender often contribute high levels of variability that can hinder the detection of biomarkers of interest, such as in disease detection. We carried out a detailed exploration of gender related metabolic profiling of human urine using a Headspace-SPME/GC–MS approach and detected over two hundred peaks. Fifty-nine metabolites were identified using the NIST library. 1H NMR spectroscopy was also utilized, and resulted in the identification of eighteen metabolites. We find that both GC–MS and NMR are able to capture human gender metabolic differences, and their combination allows a significantly better understanding of this difference. Subtle differences between genders are found to be related to the metabolism of fats, amino acids, and TCA cycle intermediates.  相似文献   

14.

Background  

Classifying nuclear magnetic resonance (NMR) spectra is a crucial step in many metabolomics experiments. Since several multivariate classification techniques depend upon the variance of the data, it is important to first minimise any contribution from unwanted technical variance arising from sample preparation and analytical measurements, and thereby maximise any contribution from wanted biological variance between different classes. The generalised logarithm (glog) transform was developed to stabilise the variance in DNA microarray datasets, but has rarely been applied to metabolomics data. In particular, it has not been rigorously evaluated against other scaling techniques used in metabolomics, nor tested on all forms of NMR spectra including 1-dimensional (1D) 1H, projections of 2D 1H, 1H J-resolved (pJRES), and intact 2D J-resolved (JRES).  相似文献   

15.
NMR spectroscopy as a particularly information-rich method offers unique opportunities for improving the structural and functional characterization of metabolomes, which will be essential for advancing the understanding of many biological processes. Whereas traditionally NMR spectroscopy was mostly relegated to the characterization of pure compounds, the past few years have seen a surge of interest in using NMR-spectroscopic techniques for characterizing complex metabolite mixtures. Development of new methods was motivated partly by the realization that using NMR for the analysis of metabolite mixtures can help identify otherwise inaccessible small molecules, for example compounds that are prone to chemical decomposition and thus cannot be isolated. Furthermore, comparative metabolomics and statistical analyses of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the range of NMR-spectroscopic techniques recently developed for characterizing metabolite mixtures, including methods used in discovery-oriented natural product chemistry, in the study of metabolite biosynthesis and function, or for comparative analyses of entire metabolomes.  相似文献   

16.
Metabolomics is defined as both the qualitative and quantitative analysis of all metabolites in an organism unraveling correlation with other OMICs data. Many of the technologies used in metabolomics have method-specific advantages and drawbacks in terms of diversity of metabolites detected, sensitivity, or resolution. In this paper, the potential of NMR spectrometry applied to metabolomics is reviewed using examples of Nicotiana tabacum and Catharanthus roseus.  相似文献   

17.
The design and analysis of experiments using gene expression microarrays is a topic of considerable current research, and work is beginning to appear on the analysis of proteomics and metabolomics data by mass spectrometry and NMR spectroscopy. The literature in this area is evolving rapidly, and commercial software for analysis of array or proteomics data is rarely up to date, and is essentially nonexistent for metabolomics data. In this paper, I review some of the issues that should concern any biologists planning to use such high-throughput biological assay data in an experimental investigation. Technical details are kept to a minimum, and may be found in the referenced literature, as well as in the many excellent papers which space limitations prevent my describing. There are usually a number of viable options for design and analysis of such experiments, but unfortunately, there are even more non-viable ones that have been used even in the published literature. This is an area in which up-to-date knowledge of the literature is indispensable for efficient and effective design and analysis of these experiments. In general, we concentrate on relatively simple analyses, often focusing on identifying differentially expressed genes and the comparable issues in mass spectrometry and NMR spectroscopy (consistent differences in peak heights or areas for example). Complex multivariate and pattern recognition methods also need much attention, but the issues we describe in this paper must be dealt with first. The literature on analysis of proteomics and metabolomics data is as yet sparse, so the main focus of this paper will be on methods devised for analysis of gene expression data that generalize to proteomics and metabolomics, with some specific comments near the end on analysis of metabolomics data by mass spectrometry and NMR spectroscopy.  相似文献   

18.
19.
The amount of data generated by NMR-based metabolomic experiments is increasing rapidly. Furthermore, diverse techniques increase the need for informative and comprehensive meta-data. These factors present a challenge in the dissemination, interpretation, reviewing and comparison of experimental results using this technology. Thus, there is a strong case for unification and standardisation of the data representation for both academia and industry. Here, a systems analysis of an NMR-based metabolomics experiment is presented in order to reveal the reporting requirements. An in-depth analysis of the NMR component of a metabolomics experiment has been produced, and a first round of data standard development completed. This has focussed on both one- and two-dimensional 1H NMR experiments, but is also applicable to higher dimensions and other nuclei. We also report the modelling of this schema using Unified Modelling Language (UML), and have extended this to a proof-of-concept implementation of the standard as an XML schema.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号