首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG.

Material/Methods

Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources.

Results/Conclusion

Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of children with these encephalopathies.  相似文献   

2.

Background and Purpose

Imaging the optic radiation (OR) is of considerable interest in studying diseases affecting the visual pathway and for pre-surgical planning of temporal lobe resections. The purpose of this study was to investigate the clinical feasibility of using probabilistic diffusion tractography based on constrained spherical deconvolution (CSD) to image the optic radiation. It was hypothesized that CSD would provide improved tracking of the OR compared with the widely used ball-and-stick model.

Methods

Diffusion weighted MRI (30 directions) was performed on twenty patients with no known visual deficits. Tractography was performed using probabilistic algorithms based on fiber orientation distribution models of local white matter trajectories. The performance of these algorithms was evaluated by comparing computational times and receiver operating characteristic results, and by correlation of anatomical landmark distances to dissection estimates.

Results

The results showed that it was consistently feasible to reconstruct individual optic radiations from clinically practical (4.5 minute acquisition) diffusion weighted imaging data sets using CSD. Tractography based on the CSD model resulted in significantly shorter computational times, improved receiver operating characteristic results, and shorter Meyer’s loop to temporal pole distances (in closer agreement with dissection studies) when compared to the ball-and-stick based algorithm.

Conclusions

Accurate tractography of the optic radiation can be accomplished using diffusion MRI data collected within a clinically practical timeframe. CSD based tractography was faster, more accurate and had better correlation with known anatomical landmarks than ball-and-stick tractography.  相似文献   

3.

Background

Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS.

Methods

18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity.

Results

Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05).

Discussion

There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.  相似文献   

4.

Research Question

Recent discoveries have challenged the traditional view that the thalamus is the primary source driving spike-and-wave discharges (SWDs). At odds, SWDs in genetic absence models have a cortical focal origin in the deep layers of the perioral region of the somatosensory cortex. The present study examines the effect of unilateral and bilateral surgical resection of the assumed focal cortical region on the occurrence of SWDs in anesthetized WAG/Rij rats, a well described and validated genetic absence model.

Methods

Male WAG/Rij rats were used: 9 in the resected and 6 in the control group. EEG recordings were made before and after craniectomy, after unilateral and after bilateral removal of the focal region.

Results

SWDs decreased after unilateral cortical resection, while SWDs were no longer noticed after bilateral resection. This was also the case when the resected areas were restricted to layers I-IV with layers V and VI intact.

Conclusions

These results suggest that SWDs are completely abolished after bilateral removal of the focal region, most likely by interference with an intracortical columnar circuit. The evidence suggests that absence epilepsy is a network type of epilepsy since interference with only the local cortical network abolishes all seizures.  相似文献   

5.

Background

Sleep spindles are ∼1-second bursts of 10–15 Hz activity, occurring during normal stage 2 sleep. In animals, sleep spindles can be synchronous across multiple cortical and thalamic locations, suggesting a distributed stable phase-locked generating system. The high synchrony of spindles across scalp EEG sites suggests that this may also be true in humans. However, prior MEG studies suggest multiple and varying generators.

Methodology/Principal Findings

We recorded 306 channels of MEG simultaneously with 60 channels of EEG during naturally occurring spindles of stage 2 sleep in 7 healthy subjects. High-resolution structural MRI was obtained in each subject, to define the shells for a boundary element forward solution and to reconstruct the cortex providing the solution space for a noise-normalized minimum norm source estimation procedure. Integrated across the entire duration of all spindles, sources estimated from EEG and MEG are similar, diffuse and widespread, including all lobes from both hemispheres. However, the locations, phase and amplitude of sources simultaneously estimated from MEG versus EEG are highly distinct during the same spindles. Specifically, the sources estimated from EEG are highly synchronous across the cortex, whereas those from MEG rapidly shift in phase, hemisphere, and the location within the hemisphere.

Conclusions/Significance

The heterogeneity of MEG sources implies that multiple generators are active during human sleep spindles. If the source modeling is correct, then EEG spindles are generated by a different, diffusely synchronous system. Animal studies have identified two thalamo-cortical systems, core and matrix, that produce focal or diffuse activation and thus could underlie MEG and EEG spindles, respectively. Alternatively, EEG spindles could reflect overlap at the sensors of the same sources as are seen from the MEG. Although our results generally match human intracranial recordings, additional improvements are possible and simultaneous intra- and extra-cranial measures are needed to test their accuracy.  相似文献   

6.

Objective

Repetitive Transcranial Magnetic Stimulation (rTMS) is a novel therapeutic tool to induce a suppression of tinnitus. However, the optimal target sites are unknown. We aimed to determine whether low-frequency rTMS induced lasting suppression of tinnitus by decreasing neural activity in the cortex, navigated by high-density electroencephalogram (EEG) source analysis, and the utility of EEG for targeting treatment.

Methods

In this controlled three-armed trial, seven normal hearing patients with tonal tinnitus received a 10-day course of 1-Hz rTMS to the cortex, navigated by high-density EEG source analysis, to the left temporoparietal cortex region, and to the left temporoparietal with sham stimulation. The Tinnitus handicap inventory (THI) and a visual analog scale (VAS) were used to assess tinnitus severity and loudness. Measurements were taken before, and immediately, 2 weeks, and 4 weeks after the end of the interventions.

Results

Low-frequency rTMS decreased tinnitus significantly after active, but not sham, treatment. Responders in the EEG source analysis-based rTMS group, 71.4% (5/7) patients, experienced a significant reduction in tinnitus loudness, as evidenced by VAS scores. The target site of neuronal generators most consistently associated with a positive response was the frontal lobe in the right hemisphere, sourced using high-density EEG equipment, in the tinnitus patients. After left temporoparietal rTMS stimulation, 42.8% (3/7) patients experienced a decrease in tinnitus loudness.

Conclusions

Active EEG source analysis based rTMS resulted in significant suppression in tinnitus loudness, showing the superiority of neuronavigation-guided coil positioning in dealing with tinnitus. Non-auditory areas should be considered in the pathophysiology of tinnitus. This knowledge in turn can contribute to investigate the pathophysiology of tinnitus.  相似文献   

7.

Background

Assessments of subnational progress and performance coverage within countries should be an integral part of health sector reviews, using recent data from multiple sources on health system strength and coverage.

Method

As part of the midterm review of the national health sector strategic plan of Tanzania mainland, summary measures of health system strength and coverage of interventions were developed for all 21 regions, focusing on the priority indicators of the national plan. Household surveys, health facility data and administrative databases were used to compute the regional scores.

Findings

Regional Millennium Development Goal (MDG) intervention coverage, based on 19 indicators, ranged from 47% in Shinyanga in the northwest to 71% in Dar es Salaam region. Regions in the eastern half of the country have higher coverage than in the western half of mainland. The MDG coverage score is strongly positively correlated with health systems strength (r = 0.84). Controlling for socioeconomic status in a multivariate analysis has no impact on the association between the MDG coverage score and health system strength. During 1991–2010 intervention coverage improved considerably in all regions, but the absolute gap between the regions did not change during the past two decades, with a gap of 22% between the top and bottom three regions.

Interpretation

The assessment of regional progress and performance in 21 regions of mainland Tanzania showed considerable inequalities in coverage and health system strength and allowed the identification of high and low-performing regions. Using summary measures derived from administrative, health facility and survey data, a subnational picture of progress and performance can be obtained for use in regular health sector reviews.  相似文献   

8.

Background

The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings.

Methodology/Principal Findings

DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes.

Conclusions/Significance

Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes.  相似文献   

9.

Background

Tinnitus is an auditory sensation characterized by the perception of sound or noise in the absence of any external sound source. Based on neurobiological research, it is generally accepted that most forms of tinnitus are attributable to maladaptive plasticity due to damage to auditory system. Changes have been observed in auditory structures such as the inferior colliculus, the thalamus and the auditory cortex as well as in non-auditory brain areas. However, the observed changes show great variability, hence lacking a conclusive picture. One of the reasons might be the selection of inhomogeneous groups in data analysis.

Methodology

The aim of the present study was to delineate the differences between the neural networks involved in narrow band noise and pure tone tinnitus conducting LORETA based source analysis of resting state EEG.

Conclusions

Results demonstrated that narrow band noise tinnitus patients differ from pure tone tinnitus patients in the lateral frontopolar (BA 10), PCC and the parahippocampal area for delta, beta and gamma frequency bands, respectively. The parahippocampal-PCC current density differences might be load dependent, as noise-like tinnitus constitutes multiple frequencies in contrast to pure tone tinnitus. The lateral frontopolar differences might be related to pitch specific memory retrieval.  相似文献   

10.
EEG/MEG source localization based on a “distributed solution” is severely underdetermined, because the number of sources is much larger than the number of measurements. In particular, this makes the solution strongly affected by sensor noise. A new way to constrain the problem is presented. By using the anatomical basis of spherical harmonics (or spherical splines) instead of single dipoles the dimensionality of the inverse solution is greatly reduced without sacrificing the quality of the data fit. The smoothness of the resulting solution reduces the surface bias and scatter of the sources (incoherency) compared to the popular minimum-norm algorithms where single-dipole basis is used (MNE, depth-weighted MNE, dSPM, sLORETA, LORETA, IBF) and allows to efficiently reduce the effect of sensor noise. This approach, termed Harmony, performed well when applied to experimental data (two exemplars of early evoked potentials) and showed better localization precision and solution coherence than the other tested algorithms when applied to realistically simulated data.  相似文献   

11.

Study Objectives

We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity.

Design

High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention.

Setting

Sound-attenuated sleep research room.

Patients or Participants

Twenty-four long-term meditators and twenty-four meditation-naïve controls.

Interventions

Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation.

Measurements and Results

We found an increase in EEG low-frequency oscillatory activities (1–12 Hz, centered around 7–8 Hz) over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25–40 Hz). There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience.

Conclusions

This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.  相似文献   

12.

Background

Visual cross-modal re-organization is a neurophysiological process that occurs in deafness. The intact sensory modality of vision recruits cortical areas from the deprived sensory modality of audition. Such compensatory plasticity is documented in deaf adults and animals, and is related to deficits in speech perception performance in cochlear-implanted adults. However, it is unclear whether visual cross-modal re-organization takes place in cochlear-implanted children and whether it may be a source of variability contributing to speech and language outcomes. Thus, the aim of this study was to determine if visual cross-modal re-organization occurs in cochlear-implanted children, and whether it is related to deficits in speech perception performance.

Methods

Visual evoked potentials (VEPs) were recorded via high-density EEG in 41 normal hearing children and 14 cochlear-implanted children, aged 5–15 years, in response to apparent motion and form change. Comparisons of VEP amplitude and latency, as well as source localization results, were conducted between the groups in order to view evidence of visual cross-modal re-organization. Finally, speech perception in background noise performance was correlated to the visual response in the implanted children.

Results

Distinct VEP morphological patterns were observed in both the normal hearing and cochlear-implanted children. However, the cochlear-implanted children demonstrated larger VEP amplitudes and earlier latency, concurrent with activation of right temporal cortex including auditory regions, suggestive of visual cross-modal re-organization. The VEP N1 latency was negatively related to speech perception in background noise for children with cochlear implants.

Conclusion

Our results are among the first to describe cross modal re-organization of auditory cortex by the visual modality in deaf children fitted with cochlear implants. Our findings suggest that, as a group, children with cochlear implants show evidence of visual cross-modal recruitment, which may be a contributing source of variability in speech perception outcomes with their implant.  相似文献   

13.

Introduction

Theta-phase gamma-amplitude coupling (TGC) measurement has recently received attention as a feasible method of assessing brain functions such as neuronal interactions. The purpose of this electroencephalographic (EEG) study is to understand the mechanisms underlying the deficits in attentional control in children with attention deficit/hyperactivity disorder (ADHD) by comparing the power spectra and TGC at rest and during a mental arithmetic task.

Methods

Nineteen-channel EEGs were recorded from 97 volunteers (including 53 subjects with ADHD) from a camp for hyperactive children under two conditions (rest and task performance). The EEG power spectra and the TGC data were analyzed. Correlation analyses between the Intermediate Visual and Auditory (IVA) continuous performance test (CPT) scores and EEG parameters were performed.

Results

No significant difference in the power spectra was detected between the groups at rest and during task performance. However, TGC was reduced during the arithmetic task in the ADHD group compared with the normal group (F = 16.70, p < 0.001). The TGC values positively correlated with the IVA CPT scores but negatively correlated with theta power.

Conclusions

Our findings suggest that desynchronization of TGC occurred during the arithmetic task in ADHD children. TGC in ADHD children is expected to serve as a promising neurophysiological marker of network deactivation during attention-demanding tasks.  相似文献   

14.

Background and Aims

Proton pump inhibitors (PPIs) have been associated with adverse clinical outcomes amongst clopidogrel users after an acute coronary syndrome. Recent pre-clinical results suggest that this risk might extend to subjects without any prior history of cardiovascular disease. We explore this potential risk in the general population via data-mining approaches.

Methods

Using a novel approach for mining clinical data for pharmacovigilance, we queried over 16 million clinical documents on 2.9 million individuals to examine whether PPI usage was associated with cardiovascular risk in the general population.

Results

In multiple data sources, we found gastroesophageal reflux disease (GERD) patients exposed to PPIs to have a 1.16 fold increased association (95% CI 1.09–1.24) with myocardial infarction (MI). Survival analysis in a prospective cohort found a two-fold (HR = 2.00; 95% CI 1.07–3.78; P = 0.031) increase in association with cardiovascular mortality. We found that this association exists regardless of clopidogrel use. We also found that H2 blockers, an alternate treatment for GERD, were not associated with increased cardiovascular risk; had they been in place, such pharmacovigilance algorithms could have flagged this risk as early as the year 2000.

Conclusions

Consistent with our pre-clinical findings that PPIs may adversely impact vascular function, our data-mining study supports the association of PPI exposure with risk for MI in the general population. These data provide an example of how a combination of experimental studies and data-mining approaches can be applied to prioritize drug safety signals for further investigation.  相似文献   

15.

Background

The available clinical outcome measures of disability in multiple sclerosis are not adequately responsive or sensitive.

Objective

To investigate the feasibility of inertial sensor-based gait analysis in multiple sclerosis.

Methods

A cross-sectional study of 80 multiple sclerosis patients and 50 healthy controls was performed. Lower-limb kinematics was evaluated by using a commercially available magnetic inertial measurement unit system. Mean and standard deviation of range of motion (mROM, sROM) for each joint of lower limbs were calculated in one minute walking test. A motor performance index (E) defined as the sum of sROMs was proposed.

Results

We established two novel observer-independent measures of disability. Hip mROM was extremely sensitive in measuring lower limb motor impairment, being correlated with muscle strength and also altered in patients without clinically detectable disability. On the other hand, E index discriminated patients according to disability, being altered only in patients with moderate and severe disability, regardless of walking speed. It was strongly correlated with fatigue and patient-perceived health status.

Conclusions

Inertial sensor-based gait analysis is feasible and can detect clinical and subclinical disability in multiple sclerosis.  相似文献   

16.

Background

Sponsors that seek to commercialize new drugs apply to the Food and Drug Administration (FDA) which independently analyzes the raw data and reports the results on its website.

Objectives

This study sought to determine if there are differences between the FDA assessments and journal reports on biologic agents developed for the treatment of rheumatoid arthritis.

Methods

Available data on FDA-approved drugs were extracted from the website, and a systematic literature search was conducted to identify matching studies in peer-reviewed medical journals. Outcome measures were the American College of Rheumatology response criteria ACR20 (efficacy) and withdrawal due to adverse events (safety). As effect size odds ratios were estimated for each active trial arm vs. control arm (i.e. for both sources: FDA and journal report), followed by calculation of the ratios of the FDA and journal report odds ratios. A ratio of odds ratios not equal to 1 was categorized as a discrepancy.

Results

FDA reports were available for 8 of 9 FDA-approved biologic agents for rheumatoid arthritis; all identified trials (34) except one were published in peer-reviewed journals. Overall, discrepancies were noted for 20 of the 33 evaluated trials. Differences in the apparent benefit reporting were found in 39% (24/61) pairwise comparisons and in 11 cases these were statistically significant; the FDA report showed greater benefit than the journal publication in 15 comparisons and lesser benefit in 9. Differences in the reported harms were found in 51% (28/55) pairwise comparisons and were statistically significant in 5. The “signal” in FDA reports showed a less harmful effect than the journal publication in 17 comparisons whereas a more harmful effect in 11. The differences were attributed to differences in analytic approach, patient inclusion, rounding effect, and counting discrepancies. However, no differences were categorized as critical.

Conclusion

There was no empirical evidence to suggest biased estimates between the two sources. Increased and detailed transparency in publications would improve the understanding and credibility of published results. Further, the FDA report was found to be a useful source when data are missing in the published report (i.e. reporting bias).  相似文献   

17.

Introduction

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provides high spatial and temporal resolution. In this study we combined EEG and fMRI to investigate the structures involved in the processing of different sound pressure levels (SPLs).

Methods

EEG data were recorded simultaneously with fMRI from 16 healthy volunteers using MR compatible devices at 3 T. Tones with different SPLs were delivered to the volunteers and the N1/P2 amplitudes were included as covariates in the fMRI data analysis in order to compare the structures activated with high and low SPLs. Analysis of variance (ANOVA) and ROI analysis were also performed. Additionally, source localisation analysis was performed on the EEG data.

Results

The integration of averaged ERP parameters into the fMRI analysis showed an extended map of areas exhibiting covariation with the BOLD signal related to the auditory stimuli. The ANOVA and ROI analyses also revealed additional brain areas other than the primary auditory cortex (PAC) which were active with the auditory stimulation at different SPLs. The source localisation analyses showed additional sources apart from the PAC which were active with the high SPLs.

Discussion

The PAC and the insula play an important role in the processing of different SPLs. In the fMRI analysis, additional activation was found in the anterior cingulate cortex, opercular and orbito-frontal cortices with high SPLs. A strong response of the visual cortex was also found with the high SPLs, suggesting the presence of cross-modal effects.  相似文献   

18.

Background

Studies disagree on the location of grey matter (GM) atrophy in the multiple sclerosis (MS) brain.

Aim

To examine the consistency between FSL, FreeSurfer, SPM for GM atrophy measurement (for volumes, patient/control discrimination, and correlations with cognition).

Materials and Methods

127 MS patients and 50 controls were included and cortical and deep grey matter (DGM) volumetrics were performed. Consistency of volumes was assessed with Intraclass Correlation Coefficient/ICC. Consistency of patients/controls discrimination was assessed with Cohen’s d, t-tests, MANOVA and a penalized double-loop logistic classifier. Consistency of association with cognition was assessed with Pearson correlation coefficient and ANOVA. Voxel-based morphometry (SPM-VBM and FSL-VBM) and vertex-wise FreeSurfer were used for group-level comparisons.

Results

The highest volumetry ICC were between SPM and FreeSurfer for cortical regions, and the lowest between SPM and FreeSurfer for DGM. The caudate nucleus and temporal lobes had high consistency between all software, while amygdala had lowest volumetric consistency. Consistency of patients/controls discrimination was largest in the DGM for all software, especially for thalamus and pallidum. The penalized double-loop logistic classifier most often selected the thalamus, pallidum and amygdala for all software. FSL yielded the largest number of significant correlations. DGM yielded stronger correlations with cognition than cortical volumes. Bilateral putamen and left insula volumes correlated with cognition using all methods.

Conclusion

GM volumes from FreeSurfer, FSL and SPM are different, especially for cortical regions. While group-level separation between MS and controls is comparable, correlations between regional GM volumes and clinical/cognitive variables in MS should be cautiously interpreted.  相似文献   

19.

Background

Muscular weakness is a frequent cause of instability that contributes to falls in Parkinson’s disease (PD). Isokinetic dynamometry is a method of muscle assessment useful to measure the muscular strength giving a quantification of the weakness, but only few studies about isokinetic assessment were performed in PD. The aims of the study were to evaluate the muscle strength in PD and to investigate the differences in patients affected on the right and left side.

Methods

Knee flexor and extensor muscles strength was assessed using an isokinetic dynamometer in 25 patients in stage 3 H&Y and in 15 healthy controls. Subjects were tested in both legs at three fixed angular velocities: 90°/s, 120°/s, 180°/s.

Results

Considering the whole population of Parkinsonians, no difference in strength was observed with respect to controls. Considering the side, patients affected on the right side showed a clear tendency to be weaker than patients affected on the left side and controls.

Conclusions

PD patients affected on the right side, but not those affected on the left side, had a reduction in muscle strength as compared to controls. We postulate a central origin deficit in muscle strength in PD. It is known that dopamine transporter binding is more severely reduced in the left posterior putamen and our results suggest that the control of the muscle strength in PD is linked to the right–left hemispheric asymmetry of the functional organization of basal ganglia and with their connections to cortical motor and pre-motor areas.  相似文献   

20.

Background

Systemic sclerosis, or scleroderma, is a chronic and rare connective tissue disease with negative physical and psychological implications. Sources of emotional distress and the impact they have on the lives of people with scleroderma are not well understood.

Objectives

To gain an in-depth understanding of the emotional experiences and sources of emotional distress for women and men living with scleroderma through focus group discussions.

Methods

Three semi-structured focus group discussions were conducted (two in English, one in French) with a total of 22 people with scleroderma recruited through the Scleroderma Society of Ontario in Hamilton, Ontario and a scleroderma clinic in Montreal, Canada. Interviews were recorded, transcribed, and then coded for emerging themes using thematic inductive analysis.

Results

Core themes representing sources of emotional distress were identified, including: (a) facing a new reality; (b) the daily struggle of living with scleroderma; (c) handling work, employment and general financial burden; (d) changing family roles; (e) social interactions; and (f) navigating the health care system. Collectively, these themes refer to the stressful journey of living with scleroderma including the obstacles faced and the emotional experiences beginning prior to receiving a diagnosis and continuing throughout the participants’ lives.

Conclusion

Scleroderma was portrayed as being an unpredictable and overwhelming disease, resulting in many individuals experiencing multiple sources of emotional distress. Interventions and supportive resources need to be developed to help individuals with scleroderma and people close to them manage and cope with the emotional aspects of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号