首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we investigate the heat and mass transfer analysis in mixed convective radiative flow of Jeffrey fluid over a moving surface. The effects of thermal and concentration stratifications are also taken into consideration. Rosseland''s approximations are utilized for thermal radiation. The nonlinear boundary layer partial differential equations are converted into nonlinear ordinary differential equations via suitable dimensionless variables. The solutions of nonlinear ordinary differential equations are developed by homotopic procedure. Convergence of homotopic solutions is examined graphically and numerically. Graphical results of dimensionless velocity, temperature and concentration are presented and discussed in detail. Values of the skin-friction coefficient, the local Nusselt and the local Sherwood numbers are analyzed numerically. Temperature and concentration profiles are decreased when the values of thermal and concentration stratifications parameters increase. Larger values of radiation parameter lead to the higher temperature and thicker thermal boundary layer thickness.  相似文献   

2.
Peristaltic transport in a two dimensional channel, filled with a porous medium in the peripheral region and a Newtonian fluid in the core region, is studied under the assumptions of long wavelength and low Reynolds number. The fluid flow is investigated in the waveframe of reference moving with the velocity of the peristaltic wave. Brinkman extended Darcy equation is utilized to model the flow in the porous layer. The interface is determined as a part of the solution using the conservation of mass in both the porous and fluid regions independently. A shear-stress jump boundary condition is used at the interface. The physical quantities of importance in peristaltic transport like pumping, trapping, reflux and axial velocity are discussed for various parameters of interest governing the flow like Darcy number, porosity, permeability, effective viscosity etc. It is observed that the peristalsis works as a pump against greater pressure in two-layered model with a porous medium compared with a viscous fluid in the peripheral layer. Increasing Darcy number Da decreases the pumping and increasing shear stress jump constant beta results in increasing the pumping. The limits on the time averaged flux Q for trapping in the core layer are obtained. The discussion on pumping, trapping and reflux may be helpful in understanding some of the fluid dynamic aspects of the transport of chyme in gastrointestinal tract.  相似文献   

3.
Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.  相似文献   

4.
In the present article, we have presented the peristaltic flow of an Oldroyd 8-constant fluid in an endoscope. The governing equations for the flow problem are simplified using long wavelength and low Reynold's number approximations. The solutions of the simplified problem are calculated using (i) Homotopy analysis method and (ii) Shooting method. The comparison of both the solutions shows a very good agreement between the results. The graphical results for the velocity field and stresses are presented to show the physical behaviour of all the parameters appearing in the problem.  相似文献   

5.
This paper studies the peristaltic transport of a viscoelastic fluid (with the fractional second-grade model) through an inclined cylindrical tube. The wall of the tube is modelled as a sinusoidal wave. The flow analysis is presented under the assumptions of long wave length and low Reynolds number. Caputo's definition of fractional derivative is used to formulate the fractional differentiation. Analytical solutions are developed for the normalized momentum equations. Expressions are also derived for the pressure, frictional force, and the relationship between the flow rate and pressure gradient. Mathematica numerical computations are then performed. The results are plotted and analysed for different values of fractional parameter, material constant, inclination angle, Reynolds number, Froude number and peristaltic wave amplitude. It is found that fractional parameter and Froude number resist the flow pattern while material constant, Reynolds number, inclination of angle and amplitude aid the peristaltic flow. Furthermore, frictional force and pressure demonstrate the opposite behaviour under the influence of the relevant parameters emerging in the equations of motion. The study has applications in uretral biophysics, and also potential use in peristaltic pumping of petroleum viscoelastic bio-surfactants in chemical engineering and astronautical applications involving conveyance of non-Newtonian fluids (e.g. lubricants) against gravity and in conduits with deformable walls.  相似文献   

6.
The present study deals with the flow and heat transfer analysis of two immiscible fluids in an inclined channel embedded in a porous medium. The channel is divided in two phases such that a third grade fluid occupies the phase I and a viscous fluid occupies the phase II. Both viscous and third grade fluids are electrically conducting. A constant magnetic field is imposed perpendicular to the channel walls. The mathematical model is developed by using Darcy''s and modified Darcy''s laws for viscous and third grade fluids respectively. The transformed ordinary differential equations are solved numerically using a shooting method. The obtained results are presented graphically and influence of emerging parameters is discussed in detail.  相似文献   

7.
The wide occurrence of peristaltic pumping should not be surprising at all since it results physiologically from neuro-muscular properties of any tubular smooth muscle. Of special concern here is to predict the rheological effects on the peristaltic motion in a curved channel. Attention is focused to develop and simulate a nonlinear mathematical model for Carreau-Yasuda fluid. The progressive wave front of peristaltic flow is taken sinusoidal (expansion/contraction type). The governing problem is challenge since it has nonlinear differential equation and nonlinear boundary conditions even in the long wavelength and low Reynolds number regime. Numerical solutions for various flow quantities of interest are presented. Comparison for different flow situations is also made. Results of physical quantities are interpreted with particular emphasis to rheological characteristics.  相似文献   

8.
A model for fluid and drug transport through the leaky neovasculature and porous interstitium of a solid tumour is developed. The transport problems are posed on a micro-scale characterized by the inter-capillary distance, and the method of multiple scales is used to derive the continuum equations describing fluid and drug transport on the length scale of the tumour (under the assumption of a spatially periodic microstructure). The fluid equations comprise a double porous medium, with coupled Darcy flow through the interstitium and vasculature, whereas the drug equations comprise advection–reaction equations; in each case the dependence of the transport coefficients on the vascular geometry is determined by solving micro-scale cell problems.  相似文献   

9.
Ali N  Hayat T  Sajid M 《Biorheology》2007,44(2):125-138
This paper presents an analysis of the peristaltic flow of a couple stress fluid in an asymmetric channel. The asymmetric nature of the flow is introduced through the peristaltic waves of different amplitudes and phases on the channel walls. Mathematical modelling corresponding to a two-dimensional flow has been carried out. The flow analysis is presented under long wavelength and low Reynolds number approximations. Closed form solutions for the axial velocity, stream function and the axial pressure gradient are given. Numerical computations have been carried out for the pressure rise per wavelength, friction forces and trapping. It is noted that there is a decrease in the pressure when the couple stress fluid parameter increases. The variation of the couple stress fluid parameter with the size of the trapped bolus is also similar to that of pressure. Furthermore, the friction force on the lower channel wall is greater than that on the upper channel wall.  相似文献   

10.
Bone remodelling is the process that maintains bone structure and strength through adaptation of bone tissue mechanical properties to applied loads. Bone can be modelled as a porous deformable material whose pores are filled with cells, organic material and interstitial fluid. Fluid flow is believed to play a role in the mechanotransduction of signals for bone remodelling. In this work, an osteon, the elementary unit of cortical bone, is idealized as a hollow cylinder made of a deformable porous matrix saturated with an interstitial fluid. We use Biot’s poroelasticity theory to model the mechanical behaviour of bone tissue taking into account transverse isotropic mechanical properties. A finite element poroelastic model is developed in the COMSOL Multiphysics software. Elasticity equations and Darcy’s law are implemented in this software; they are coupled through the introduction of an interaction term to obtain poroelasticity equations. Using numerical simulations, the investigation of the effect of spatial gradients of permeability or Poisson’s ratio is performed. Results are discussed for their implication on fluid flow in osteons: (i) a permeability gradient affects more the fluid pressure than the velocity profile; (ii) focusing on the fluid flow, the key element of loading is the strain rate; (iii) a Poisson’s ratio gradient affects both fluid pressure and fluid velocity. The influence of textural and mechanical properties of bone on mechanotransduction signals for bone remodelling is also discussed.  相似文献   

11.
In this paper, the heat and flow characteristic of third-grade non-Newtonian biofluids flow through a vertical porous human vessel due to peristaltic wall motion are studied. The third-grade model can describe shear thinning (or shear thickening) and normal stress differences, which is acceptable for biofluids modeling. In order to solve the governing equations, the assumption of long-wavelength approximation is utilized. This hypothesis emphasizes that the wavelength of the peristaltic wall motion is large in comparison with the radius of the human vessel, which is widely acceptable in biological investigations. The analytical perturbation method is employed to solve the governing equations. Consequently, analytical expressions for the velocity profile, shear stress, temperature field, and biofluid flow rate are obtained. In addition, the effects of the governing parameters such as the third-grade non-Newtonian parameter, Grashof Number, Eckert number, and porosity, on the results are examined.  相似文献   

12.
In the present article, we have presented the peristaltic flow of an Oldroyd 8-constant fluid in an endoscope. The governing equations for the flow problem are simplified using long wavelength and low Reynold's number approximations. The solutions of the simplified problem are calculated using (i) Homotopy analysis method and (ii) Shooting method. The comparison of both the solutions shows a very good agreement between the results. The graphical results for the velocity field and stresses are presented to show the physical behaviour of all the parameters appearing in the problem.  相似文献   

13.
In this investigation, peristaltic flow of Walter’s B fluid in a uniform inclined tube is discussed. The formulation of the problem is made in a cylindrical coordinate system. The analytical solutions have been calculated by using a regular perturbation method by taking δ as the perturbation parameter. The expressions for pressure rise and friction forces were calculated using numerical integration. The graphical results are presented to discuss the various physical quantities of the Walter’s B fluid parameter α, amplitude ratio φ, angle of inclination β and wave length δ.  相似文献   

14.
The guinea pig ileum responds to distension with characteristic wall movements, luminal pressure gradients, and outflow (the peristaltic reflex). To date, little is known about whether the peristaltic reflex generates flow events other than laminar flow. Here we used a numerical method to solve for the flow generated by moving walls to assess occlusive contractions (case 1), nonocclusive contractions (case 2), and contractions with steep shoulders (case 3) for which visual parameters of wall movements are published. We found that all three contraction cases produced pressure differentials across the coapting segment, downstream and reverse flow, and vortical flow patterns that redistributed particles and mixed liquids. Contractions generated pressures and shear stresses, particularly along the moving section of the wall. The nonocclusive contraction was much less effective than the occlusive contraction with the steep shoulders; the occlusive contraction with flat shoulders had an intermediate effect. Our analysis shows that even peristaltic contractions produce not only laminar flow but also many flow events likely to promote digestion and absorption. The visual patterns of contractions impact the patterns of luminal flow, and precise definition of wall movements is critical to quantify the fluid mechanical consequences of intestinal contractions.  相似文献   

15.
The development of bone tissue engineering depends on the availability of suitable biomaterials, a well‐defined and controlled bioreactor system, and on the use of adequate cells. The biomaterial must fulfill chemical, biological, and mechanical requirements. Besides biocompatibility, the structural and flow characteristics of the biomaterial are of utmost importance for a successful dynamic cultivation of osteoblasts, since fluid percolation within the microstructure must be assured to supply to cells nutrients and waste removal. Therefore, the biomaterial must consist of a three‐dimensional structure, exhibit high porosity and present an interconnected porous network. Sponceram®, a ZrO2 based porous ceramic, is characterized in the presented work with regard to its microstructural design. Intrinsic permeability is obtained through a standard Darcy's experiment, while Young's modulus is derived from a two plates stress–strain test in the linear range. Furthermore, the material is applied for the dynamic cultivation of primary osteoblasts in a newly developed rotating bed bioreactor. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
A mathematical model based on viscoelastic fluid (fractional Oldroyd-B model) flow is considered for the peristaltic flow of chyme in small intestine, which is assumed to be in the form of an inclined cylindrical tube. The peristaltic flow of chyme is modeled more realistically by assuming that the peristaltic rush wave is a sinusoidal wave, which propagates along the tube. The governing equations are simplified by making the assumptions of long wavelength and low Reynolds number. Analytical approximate solutions of problem are obtained by using homotopy analysis method and convergence of the obtained series solution is properly checked. For the realistic values of the emerging parameters such as fractional parameters, relaxation time, retardation time, Reynolds number, Froude number and inclination of tube, the numerical results for the pressure difference and the frictional force across one wavelength are computed and discussed the roles played by these parameters during the peristaltic flow. On the basis of this study, it is found that the first fractional parameter, relaxation time and Froude number resist the movement of chyme, while, the second fractional parameter, retardation time, Reynolds number and inclination of tube favour the movement of chyme through the small intestine during pumping. It is further revealed that size of trapped bolus reduces with increasing the amplitude ratio whereas it is unaltered with other parameters.  相似文献   

17.
The present study extends the two-dimensional analysis of peristaltic motion by Fung and Yih to include an elastic or viscoelastic wall, and a Poiseuille flow. This fluid-solid interaction problem is investigated by considering equations of motion of both the fluid and the deformable boundaries. The wall characteristics appear in their equations of motion, which are solved to represent boundary conditions of fluid motion. The influence of Poiseuille flow on pure peristalisis is also investigated.

The phenomenon of the ‘mean flow reversal’ is found to exist both at the center and at the boundaries of the channel. When the walls of the channel are elastic, pure peristalsis involves flow reversal only at the center. This position may shift drastically to the boundaries, if viscous damping forces are considered.  相似文献   


18.
A special peristaltic pump is described that has functioned as part of a system for density gradient formation and fractionation. Twenty-five pumping tubes are actuated on both the top and bottom of the pump. A Mylar diaphragm interposed between the rollers and the pumping tubes filters out the horizontal, stretching component of the forces imparted to the tubes. This greatly prolongs tube life, increases the allowable pressures that can be achieved with such a pump, and thus permits accurate delivery of viscous solutions.An explanation of the cause of the pulsations produced by peristaltic pumps is presented and the virtual elimination of these pulsations is demonstrated.Both velocity and direction of flow of the pump are controlled. By means of two independent bidirectional digital counters, preset volumes of fluid can be delivered and the total volume of liquid determined.Studies demonstrating the relative independence of fluid volume delivered at a preset count versus flow velocity and composition are presented.Other possibilities for use of the pump in automating density gradient analysis are discussed. Possibilities for employment of the pump for autoanalysis and in artificial organs are indicated.  相似文献   

19.
Ureteral peristaltic mechanism facilitates urine transport from the kidney to the bladder. Numerical analysis of the peristaltic flow in the ureter aims to further our understanding of the reflux phenomenon and other ureteral abnormalities. Fluid-structure interaction (FSI) plays an important role in accuracy of this approach and the arbitrary Lagrangian-Eulerian (ALE) formulation is a strong method to analyze the coupled fluid-structure interaction between the compliant wall and the surrounding fluid. This formulation, however, was not used in previous studies of peristalsis in living organisms. In the present investigation, a numerical simulation is introduced and solved through ALE formulation to perform the ureteral flow and stress analysis. The incompressible Navier-Stokes equations are used as the governing equations for the fluid, and a linear elastic model is utilized for the compliant wall. The wall stimulation is modeled by nonlinear contact analysis using a rigid contact surface since an appropriate model for simulation of ureteral peristalsis needs to contain cell-to-cell wall stimulation. In contrast to previous studies, the wall displacements are not predetermined in the presented model of this finite-length compliant tube, neither the peristalsis needs to be periodic. Moreover, the temporal changes of ureteral wall intraluminal shear stress during peristalsis are included in our study. Iterative computing of two-way coupling is used to solve the governing equations. Two phases of nonperistaltic and peristaltic transport of urine in the ureter are discussed. Results are obtained following an analysis of the effects of the ureteral wall compliance, the pressure difference between the ureteral inlet and outlet, the maximum height of the contraction wave, the contraction wave velocity, and the number of contraction waves on the ureteral outlet flow. The results indicate that the proximal part of the ureter is prone to a higher shear stress during peristalsis compared with its middle and distal parts. It is also shown that the peristalsis is more efficient as the maximum height of the contraction wave increases. Finally, it is concluded that improper function of ureteropelvic junction results in the passage of part of urine back flow even in the case of slow start-up of the peristaltic contraction wave.  相似文献   

20.
We describe a mathematical model of the flow and deformation in a human teat. Our aim is to compare the theoretical milk yield during infant breast feeding with that obtained through the use of a breast pump. Infants use a peristaltic motion of the tongue, along with some suction, to extract milk, whereas breast pumps use a cyclic pattern of suction only. Our model is based on quasi-linear poroelasticity whereby the teat is modelled as a cylindrical porous elastic material saturated with fluid. We impose a cyclic axial suction pressure difference across the teat and impose a radial compressive force moving along the teat which mimics infant suckling. This is compared to the case of cyclic and steady pumping only which models the action of breast pumps. The results illustrate that there is an optimal time to apply the compressive force during the suction cycle that will increase the flow rate in our theoretical teat. The model and results may be of use in the future design of effective breast pumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号