首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies using transgenic animals have revealed a crucial role for polyamines in the development and the growth of skin and hair follicles. In mammals, the growth of hair is characterized by three main cyclic phases of transformation, including a rapid growth phase (anagen), an apoptosis-driven regression phase (catagen) and a relatively quiescent resting phase (telogen). The polyamine pool during the anagen phase is higher than in telogen and catagen phases. In this study, we used α-methylspermidine, a metabolically stable polyamine analog, to artificially elevate the polyamine pool during telogen. This manipulation was sufficient to induce hair growth in telogen phase mice after 2 weeks of daily topical application. The application site was characterized by typical features of anagen, such as pigmentation, growing hair follicles, proliferation of follicular keratinocytes and upregulation of β-catenin. The analog penetrated the protective epidermal layer of the skin and could be detected in dermis. The natural polyamines were partially replaced by the analog in the application site. However, the combined pool of natural spermidine and α-methylspermidine exceeded the physiological spermidine pool in telogen phase skin. These results highlight the role of polyamines in hair cycle regulation and show that it is possible to control the process of hair growth using physiologically stable polyamine analogs.  相似文献   

2.
HM Hu  SB Zhang  XH Lei  ZL Deng  WX Guo  ZF Qiu  S Liu  XY Wang  H Zhang  EK Duan 《PloS one》2012,7(7):e40124
Estrogen dysregulation causes hair disorder. Clinical observations have demonstrated that estrogen raises the telogen/anagen ratio and inhibits hair shaft elongation of female scalp hair follicles. In spite of these clinical insights, the properties of estrogen on hair follicles are poorly dissected. In the present study, we show that estrogen induced apoptosis of precortex cells and caused premature catagen by up-regulation of TGF β2. Immediately after the premature catagen, the expression of anagen chalone BMP4 increased. The up-regulation of BMP4 may further function to prevent anagen transition and maintain telogen. Interestingly, the hair follicle stem cell niche was not destructed during these drastic structural changes caused by estrogen. Additionally, dermal papilla cells, the estrogen target cells in hair follicles, kept their signature gene expressions as well as their hair inductive potential after estrogen treatment. Retention of the characteristics of both hair follicle stem cells and dermal papilla cells determined the reversibility of the hair cycle suppression. These results indicated that estrogen causes reversible hair cycle retardation by inducing premature catagen and maintaining telogen.  相似文献   

3.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

4.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

5.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

6.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

7.
The hair growth cycle consists of three stages known as the anagen (growing), catagen (involution), and telogen (resting) phases. This cyclical growth of hair is regulated by a diversity of growth factors. Although normal expression of both epidermal growth factor and its receptor (EGFR) in the outer root sheath is down-regulated with the completion of follicular growth, here we show that continuous expression of epidermal growth factor in hair follicles of transgenic mice arrested follicular development at the final stage of morphogenesis. Data from immunoprecipitation and immunoblotting showed that epidermal growth factor signals through EGFR/ErbB2 heterodimers in skin. Furthermore, topical application of tyrphostin AG1478 or AG825, specific inhibitors of EGFR and ErbB2, respectively, completely inhibited new hair growth in wild type mice but not in transgenic mice. When the transgenic mice were crossed with waved-2 mice, which possess a lower kinase activity of EGFR, the hair phenotype was rescued in the offspring. Taken together, these data suggest that EGFR signaling is indispensable for the initiation of hair growth. On the other hand, continuous expression of epidermal growth factor prevents entry into the catagen phase. We propose that epidermal growth factor functions as a biologic switch that is turned on and off in hair follicles at the beginning and end of the anagen phase of the hair cycle, guarding the entry to and exit from the anagen phase.  相似文献   

8.
9.
目的:探讨毛囊周期中,Wnt3a在毛囊及黑素细胞中的表达变化。方法:以DCT-LacZ转基因小鼠为动物模型,通过X-gal染色技术观察黑素细胞谱系在小鼠皮肤中的分布情况;采用X-gal染色结合免疫组化方法检测Wnt3a在毛囊及黑素细胞谱系中的表达情况;采用RT-PCR方法对小鼠皮肤全层Wnt3a和TYR的mRNA表达进行半定量分析。结果:在生长期毛囊中,Wnt3a蛋白在表皮、毛囊外根鞘Bulge区、内根鞘以及毛球部均有表达,在黑素干细胞与黑素细胞也观察到Wnt3a;在退化期,Wnt3a的表达逐渐减弱,仅在外根鞘有较弱的表达,但黑素干细胞中没有观察到Wnt3a;在静止期,几乎检测不到Wnt3a的表达;TYR mRNA与Wnt3a mRNA在毛囊周期中的表达模式一致,在生长期最强,退化期减弱,静止期最弱。结论:Wnt3a可能对黑素细胞谱系分化起到促进作用。  相似文献   

10.
小眼畸形转录因子(MITF)不仅是黑色素细胞发育、增殖和存活的必要调节因子,而且对调节相关酶和黑素体蛋白表达来确保黑色素产生具有至关重要的作用。MITF下游色素相关基因在小鼠毛囊生长周期中的表达及相关性仍有待研究。HE染色结果表明不同毛囊时期的小鼠毛囊呈现典型的组织形态学结构;免疫组织化学显示,MITF、GPNMB、OA1、TYR、TYRP2在不同毛囊生长周期中的毛基质及内外毛根鞘均有不同程度的阳性表达。黑色素测定结果表明,在毛囊生长初期和中期,碱性可溶性总黑色素(ASM)、真黑素(EM)以及褐黑素(PM)相对含量高于毛囊生长末期。蛋白免疫印迹结果表明,MITF、GPNMB、OA1、TYR、TYRP2在毛囊生长初期和中期蛋白质相对水平明显高于毛囊生长末期。实时荧光定量PCR结果表明, MITF、GPNMB、OA1、TYR、TYRP2、PMEL在毛囊生长初期和中期,mRNA相对表达量显著高于毛囊生长末期。在不同毛囊生长周期小鼠皮肤的MITF下游色素相关基因表达存在显著差异,表明上述因子在维持黑色素细胞色素生成是不可或缺的因素。  相似文献   

11.
Human scalp hair consists of a set of about 10(5)follicles which progress independently through developmental cycles. Each hair follicle successively goes through the anagen (A), catagen (C), telogen (T) and latency (L) phases that correspond, respectively, to growth, arrest and hair shedding before a new anagen phase is initiated. Long-term experimental observations in a group of ten male, alopecic and non-alopecic volunteers allowed determination of the characteristics of hair follicle cycles. On the basis of these observations, we previously proposed a follicular automaton model to simulate the dynamics of human hair cycles and the development of different patterns of alopecia [Halloy et al. (2000) Proc. Natl Acad. Sci. U.S.A.97, 8328-8333]. The automaton model is defined by a set of rules that govern the stochastic transitions of each follicle between the successive states A, T, L and the subsequent return to A. These transitions occur independently for each follicle, after time intervals given stochastically by a distribution characterized by a mean and a standard deviation. The follicular automaton model was shown to account both for the dynamical transitions observed in a single follicle, and for the behaviour of an ensemble of independently cycling follicles. Here, we extend these results and investigate additional properties of the model. We present a deterministic version of the follicular automaton. We show that numerical simulations of the stochastic version of the automaton yield steady-state level of follicles in the different phases which approach the levels predicted by the deterministic equations as the number of follicles progressively increases. Only the stochastic version can successfully reproduce the fluctuations of the fractions of follicles in each of the three phases, observed in small follicle populations. When the standard deviation is reduced or when the follicles become otherwise synchronized, e.g. by a periodic external signal inducing the transition of anagen follicles into telogen phase, large-amplitude oscillations occur in the fractions of follicles in the three phases. These oscillations are not observed in humans but are reminiscent of the phenomenon of moulting observed in a number of mammalian species.  相似文献   

12.
毛囊生长周期中,真皮乳头和毛基质间的基质 上皮信号调控细胞的增殖和分化。多功能细胞调控因子胰岛素样生长因子1(IGF1)是该信号路径的成员之一。第1个毛囊生长周期决定着毛囊的正常生长和发育,但IGF1在此期的作用未见报道。实时荧光定量PCR结果显示,IGF1在生长期皮肤中的相对表达量最低,在退化期表达量最高,在静止期表达量又降低。与生长初期相比,IGF1在退化期和静止期的表达量呈差异极显著(P<0.01);胰岛素样生长因子1受体(IGF1R)在生长期皮肤中的相对表达量最高,在退化期表达量最低,而在静止期表达量又升高。与生长初期相比,IGF1R在退化期和静止期的表达量呈差异极显著(P<0.01)。Western 印迹结果显示,IGF1和IGF1R蛋白在小鼠皮肤第1个毛囊生长周期各阶段的表达趋势分别与其mRNA的表达趋势一致;免疫组织化学结果表明,IGF1主要分布在小鼠表皮,而IGF1R免疫阳性在小鼠毛囊毛球部、内外根鞘和毛乳头均有分布。以上实验结果揭示,IGF1和IGF1R在小鼠皮肤第1个毛囊生长周期的各阶段的差异性表达,可能在毛囊生长周期各阶段的转化过程中参与了黑色素的形成。然而,IGF1和IGF1R表达趋势不一致,提示IGF1在小鼠皮肤中发挥作用时,并非只与IGF1R结合才能发挥作用。  相似文献   

13.
Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.   总被引:14,自引:0,他引:14  
The regression phase of the hair cycle (catagen) is an apoptosis-driven process accompanied by terminal differentiation, proteolysis, and matrix remodeling. As an inhibitor of keratinocyte proliferation and inductor of keratinocyte apoptosis, transforming growth factor beta1 (TGF-beta1) has been proposed to play an important role in catagen regulation. This is suggested, for example, by maximal expression of TGF-beta1 and its receptors during late anagen and the onset of catagen of the hair cycle. We examined the potential involvement of TGF-beta1 in catagen control. We compared the first spontaneous entry of hair follicles into catagen between TGF-beta1 null mice and age-matched wild-type littermates, and assessed the effects of TGF-beta1 injection on murine anagen hair follicles in vivo. At day 18 p.p., hair follicles in TGF-beta1 -/- mice were still in early catagen, whereas hair follicles of +/+ littermates had already entered the subsequent resting phase (telogen). TGF-beta1-/- mice displayed more Ki-67-positive cells and fewer apoptotic cells than comparable catagen follicles from +/+ mice. In contrast, injection of TGF-beta1 into the back skin of mice induced premature catagen development. In addition, the number of proliferating follicle keratinocytes was reduced and the number of TUNEL + cells was increased in the TGF-beta1-treated mice compared to controls. Double visualization of TGF-beta type II receptor (TGFRII) and TUNEL reactivity revealed colocalization of apoptotic nuclei and TGFRII in catagen follicles. These data strongly support that TGF-beta1 ranks among the elusive endogenous regulators of catagen induction in vivo, possibly via the inhibition of keratinocyte proliferation and induction of apoptosis. Thus, TGF-betaRII agonists and antagonists may provide useful therapeutic tools for human hair growth disorders based on premature or retarded catagen development (effluvium, alopecia, hirsutism).  相似文献   

14.
Hasse S  Chernyavsky AI  Grando SA  Paus R 《Life sciences》2007,80(24-25):2248-2252
Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in M4R KO mice, compared to age-matched wild type controls. On day 17, when mice enter the first hair growth cycle, the KO mice still showed a slightly retarded catagen phase. Subsequently, hair follicles of the KO mice stayed in a highly significantly prolonged telogen phase, while wild type mice had already far progressed in the hair cycle by entry into anagen. Most strikingly, the M4R KO mice did not engage in follicular melanogenesis and failed to produce pigmented hair shafts. The current pilot study suggests that the M4R plays a fundamental role in the control of the murine hair follicle cycling and is an essential signaling element in the control of hair follicle pigmentation.  相似文献   

15.
In mammals, hair follicles produce hairs that fulfill a number of functions including thermoregulation, collecting sensory information, protection against environmental trauma, social communication, and mimicry. Hair follicles develop as a result of epithelial-mesenchymal interactions between epidermal keratinocytes committed to hair-specific differentiation and cluster of dermal fibroblasts that form follicular papilla. During postnatal life, hair follicles show patterns of cyclic activity with periods of active growth and hair production (anagen), apoptosis-driven involution (catagen), and relative resting (telogen). During last decade, substantial progress has been achieved in delineating molecular mechanisms that control hair follicle development and cyclic activity. In this review, we summarize the data demonstrating that regulation of hair follicle development in the embryo and control of hair follicle growth during postnatal life are highly conserved and both require involvement of similar molecular mechanisms. Since many of the molecules that control hair follicle development and cycling are also involved in regulating morphogenesis and postnatal biology of other ectodermal derivatives, such as teeth, feathers, and mammary glands, basic principles and molecular mechanisms that govern hair follicle development and growth may also be applicable for other developmental systems.  相似文献   

16.
The hair follicle (HF) represents a prototypic ectodermal–mesodermal interaction system in which central questions of modern biology can be studied. A unique feature of these stem‐cell‐rich mini‐organs is that they undergo life‐long, cyclic transformations between stages of active regeneration (anagen), apoptotic involution (catagen), and relative proliferative quiescence (telogen). Due to the low proliferation rate and small size of the HF during telogen, this stage was conventionally thought of as a stage of dormancy. However, multiple lines of newly emerging evidence show that HFs during telogen are anything but dormant. Here, we emphasize that telogen is a highly energy‐efficient default state of the mammalian coat, whose function centres around maintenance of the hair fibre and prompt responses to its loss. While actively retaining hair fibres with minimal energy expenditure, telogen HFs can launch a new regeneration cycle in response to a variety of stimuli originating in their autonomous micro‐environment (including its stem cell niche) as well as in their external tissue macro‐environment. Regenerative responses of telogen HFs change as a function of time and can be divided into two sub‐stages: early ‘refractory’ and late ‘competent’ telogen. These changing activities are reflected in hundreds of dynamically regulated genes in telogen skin, possibly aimed at establishing a fast response‐signalling environment to trauma and other disturbances of skin homeostasis. Furthermore, telogen is an interpreter of circadian output in the timing of anagen initiation and the key stage during which the subsequent organ regeneration (anagen) is actively prepared by suppressing molecular brakes on hair growth while activating pro‐regenerative signals. Thus, telogen may serve as an excellent model system for dissecting signalling and cellular interactions that precede the active ‘regenerative mode’ of tissue remodeling. This revised understanding of telogen biology also points to intriguing new therapeutic avenues in the management of common human hair growth disorders.  相似文献   

17.
The human hair cycle is characterized by successive phases of growth and involution that imply tissue regression and regeneration. As a consequence, the hair melanin unit has to be renewed in a cyclic manner. Actually, the behavior of human hair follicle melanocytes throughout the hair cycle has been poorly studied. Thus, the origin of melanocytes present in the bulb after human hair regeneration is still not clarified, and neither are the events that control the melanin biosynthesis activity in the human hair bulb. In this study, we showed at the cellular level that in human pigmented hair follicles, the expression of tyrosinase and tyrosinase-related protein-1 (TRP-1) was detectable during the anagen phases III/IV through VI, only in those melanocytes which were located in the bulb. During the catagen phase, the two evaluated melanogenic enzymes were detectable no more, although melanocytes were still present in the preceding bulbar area. The epithelial column of catagen follicles and the capsule of telogen follicles also contained inactive melanocytes as evidenced by pMel-17 labeling. At the induction of a new anagen hair follicle, some melanocytes were committed to cell division, but only when located in the nascent bulb close to the dermal papilla. Our results emphasize the close relationship between melanogenesis and the hair cycle and suggest that in humans, melanogenesis is restricted to anagen hair follicles not because of the regulation of tyrosinase activity, but because of melanogenic enzyme expression, e.g., tyrosinase and TRP-1. Furthermore, the fact that in the newly developing anagen hair follicles, cell-division commitment and tyrosinase and TRP-1 expression were observed in melanocytes only when located in the nascent bulb suggests a highly regio-specific melanocyte stimulation in early the anagen phase.  相似文献   

18.
In adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1. Gli1-expressing bulge cells function as multipotent stem cells in their native environment and repeatedly regenerate the anagen follicle. Shh-responding perineural bulge cells incorporate into healing skin wounds where, notably, they can change their lineage into epidermal stem cells. The perineural niche (including Shh) is dispensable for follicle contributions to acute wound healing and skin homeostasis, but is necessary to maintain bulge cells capable of becoming epidermal stem cells. Thus, nerves cultivate a microenvironment where Shh creates a molecularly and phenotypically distinct population of hair follicle stem cells.  相似文献   

19.
We studied the hair-forming ability of epithelium and the relevant activity of dermal papilla (DP) in mouse vibrissal follicles during the hair cycle. Follicles were transversely cut into four pieces and each of them was associated with an isolated DP and grafted beneath the kidney capsule to induce hair formation. Various hair-cycle combinations of the fragments and DPs were examined. Hairs were generated not only in the follicle fragment containing the bulge (fragment III) but also in the fragment between the bulge and hair bulb (fragment II). The hair-forming frequencies were affected by the hair cycle stages of both the follicle fragments and DPs. Fragment III at late anagen (LA) and fragment II at catagen frequently generated hairs when associated with early anagen (EA)-DPs, but infrequently with mid-anagen (MA)-DPs. Oppositely, anagen fragment II produced hairs at a high frequency with MA-DPs and at a low frequency with EA-DPs. Hair generation in anagen fragment II is an unexpected finding because previous studies suggested that, during anagen, this region does not contain clonogenic epithelial cells that have been believed to be crucial for hair formation. Therefore, non-clonogenic epithelial cells would be able to generate hairs as well as clonogenic ones, and they should have a latent hair-forming ability that could be more effectively awakened by MA-DP than by EA-DP stimuli. Non-clonogenic epithelial cells might be a dormant phase of hair precursor cells. Proliferating follicular epithelial cells were detected in the middle and lower outer root sheath throughout the hair cycle but scarcely at LA. These findings suggest that the hair inductivity of DPs should be altered between EA and MA, and follicular epithelial cells would change their DP stimuli-directed hair-forming ability around LA, probably linked to the proliferative activity.  相似文献   

20.
Hair follicle histophysiology importance isn't limited by hair role in psychosocial consequences. More scientists consider the hair follicle as an attractive system for studying major biological phenomena because the hair follicle is a regenerating system. In this review we revisit the current information about histophysiology and control of hair follicle cycling. All mature follicles undergo a growth cycle consisting of following phases: growth (anagen), regression (catagen) and rest (telogen). We attempt to integrate the morphology with the physiology and molecular biology. Hair follicles are influenced by environmental, systemic and local factors. The most interesting point of this problem is discussed--an integral regulation of hair follicle cycle by systemic, intertissue and intercellular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号