首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
韩嵘  苏平  尚克刚 《遗传学报》2001,28(9):816-821,T001
虽然ES细胞技术的应用十分广泛,对ES细胞多能性本质的研究还不是很深入,体外培养的ES细胞群体的不均一性加大了这方面研究的难度,报道了对ES细胞中特异表达的基因,将报告基因βgeo插入oct-基因转录元件中构建了标记载体pG18NG,转染ES细胞MESPU22和MESPU13后获得了稳定整合的细胞克隆,经体外培养、诱导分化、嵌入体制作等实验,证明利用该载体对ES细胞中的未分化细胞成功进行了标记,该标记在体内、体外都是有效的。  相似文献   

2.
胚胎干细胞的基因转录调控   总被引:1,自引:0,他引:1  
胚胎干细胞作为一种具有多潜能性和自我更新能力的细胞,在人类等高等生物发育中占有重要地位;基于这一特性,胚胎干细胞在临床上具有极其广阔的应用前景。转录因子OCT4、SOX2和NANOG通过调节胚胎干细胞的基因转录,对其多潜能性和自我更新能力具有关键性的调控作用。对这一作用机制的研究,将对人类早期发育的了解和胚胎干细胞的临床应用具有积极意义。  相似文献   

3.
4.
5.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

6.
胚胎干细胞(embryonic stem cells,ES细胞)特异性分子标志是指ES细胞胞内或胞膜上特异表达的分子.已报道的包括转录因子、信号通路受体、黏附因子在内的ES细胞特异性标志与ES细胞的自我更新和全能性具有密切关系.ES细胞特异性分子标志的研究,有助于ES细胞的鉴定、分离纯化、质量控制,加快ES细胞的基础研究和临床应用.现对目前已经发现的ES细胞特异性分子标志及其研究方法和常用ES细胞分子标志的功能进行综述.  相似文献   

7.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.  相似文献   

8.
Since James Thomson et al developed a technique in 1998 to isolate and grow hES in culture, freezing cells for later use and thawing and expanding cells from a frozen stock have become important procedures performed in routine hES cell culture. Since hES cells are very sensitive to the stresses of freezing and thawing, special care must taken. Here we demonstrate the proper technique for rapidly thawing hES cells from liquid nitrogen stocks, plating them on mouse embryonic feeder cells, and slowly freezing them for long-term storage.Download video file.(102M, mp4)  相似文献   

9.
The presence of insulin receptors was investigated in human Y-79 retinoblastoma cells grown in suspension culture. The binding of [125I] insulin to these cells was time, temperature, and pH dependent, was competed for by insulin and proinsulin but not other peptides, and was inhibited by antibodies against the insulin receptor. The Scatchard plot of insulin competition data was curvilinear and was resolved into a high-affinity (KD approximately 0.5 X 10(-9) M)/low-capacity (approximately 3,000 sites/cell) and a low-affinity (KD approximately 1 X 10(-7) M)/high-capacity (approximately 155,000 sites/cell) component. Negative cooperativity was not found, in agreement with other studies in rodent neural cells. However, in contrast to studies with rodent cells, insulin specifically down-regulated its receptor on human Y-79 cells after prolonged exposure. In conclusion, these data show for the first time the presence of specific insulin receptors in human Y-79 retinoblastoma cells. Because these cells were previously shown to have several characteristics typical of neural cells, we propose their use as a model to study the effects of insulin on neural and retinal tissues of human origin.  相似文献   

10.
Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.  相似文献   

11.
12.
人胚胎干细胞具有广泛的研究前景,建立一个理想的人胚胎干细胞培养系统是利用它的前提.较详细地对目前关于人胚胎干细胞培养体系的研究进展、一些细胞因子对人胚胎干细胞的作用和影响以及体外长期培养对人胚胎干细胞核型的影响进行了综述.  相似文献   

13.
A review of one of the key problems of experimental hematology: the origin of hemopoietic stem cells in the development of vertebrates (amphibians, birds, and mammals). The appearance and functioning of two independent sources of hemopoietic stem cells (extra- and intraembryonic) were considered in amphibians, birds, and mammals. The contribution of each source to the formation of definitive hemopoietic tissue was analyzed. It was shown for amphibians and birds that intraembryonic organs such as the dorsolateral plate and the mesenchyme of dorsal aorta are involved in the formation of adult hemopoietic tissue, while the extraembryonic organs such as ventral islets and the yolk sac are devoid of true stem cells and provide only for the primary, transient hemopoiesis. New data have been considered concerning the previously unknown intraembryonic hemopoietic organ in mammals, a region of aorta–gonad–mesonephros arising in embryogenesis simultaneously with the yolk sac. Two extreme views on the involvement of stem cells of all these organs in the formation of definitive hemopoiesis have been considered. The data are provided on the interaction of the embryonic hemopoietic stem cells and the hemopoietic microenvironment of adult recipients.  相似文献   

14.
In order to exploit the exceptional potential of human embryonic stem cells (hESCs) incell-replacement therapies, the genetic and epigenetic factors controlling early humandevelopment must be better defined. Limitations in human embryonic material restrict thescale of studies that can be performed, and therefore an in vitro model in which to studyepigenetic regulation in human pre-implantation cell types would be desirable. HESCscould provide such a model, but since they are derived from a stage in mammaliandevelopment when the genome is undergoing global epigenetic remodelling, it is unclearwhether their epigenetic status would be stable or subject to variation. Herein, we discussrecent work that examines allele-specific imprinted gene expression and methylationpatterns, thereby demonstrating that hESCs maintain a substantial degree of epigeneticstability during culture. Therefore, we suggest that hESCs could provide a model forstudying epigenetic regulation during the early stages of human cellular pluripotency anddifferentiation. Furthermore, we propose specific experiments using such a model toaddress important questions pertaining to epigenetic mechanisms of certain humandisorders.  相似文献   

15.
干细胞为一类具有无限的或者永生的自我更新能力的细胞,包括胚胎性干细胞和成体干细胞.胚胎性干细胞有胚胎干细胞、畸胎瘤细胞和原始生殖细胞.成体干细胞主要有骨髓间充质干细胞,造血干细胞、神经干细胞、表皮干细胞、脂肪干细胞等.随着体细胞核移植技术与干细胞培养技术的成熟,两者相结合便产生了核移植来源胚胎干细胞(embryonic stem cells via nuclear transfer,ntES细胞),其不仅用于基础的研究,而且也用于临床医学的组织修复和移植的研究.现就干细胞作为核供体时的核移植效率,ntES细胞系的建立、其性质及诱导分化等的研究进展进行综述.  相似文献   

16.
人胚胎干细胞向神经上皮祖细胞的诱导分化   总被引:1,自引:0,他引:1  
人胚胎干细胞具有自我更新和多向分化潜能,是研究早期胚胎发育和细胞替代治疗的重要细胞来源.采用一种与小鼠成纤维细胞共培养的方法进行人胚胎干细胞的神经诱导,可产生高纯度的神经上皮祖细胞,其神经上皮特异性基因的表达有一定的时空性;诱导生成的神经上皮祖细胞具有增殖潜能并可分化为神经元和星型胶质细胞,是潜在的神经干细胞.人胚胎干细胞来源的神经上皮祖细胞为研究神经发育和神经诱导提供了新材料,也为神经系统疾病的细胞替代治疗提供了新的细胞来源.  相似文献   

17.
Highlights? RYBP-PRC1 and Cbx7-PRC1 regulate a cohort of both common and specific sets of genes ? The presence of either RYBP or Cbx7 defines the biological function of PRC1 complexes ? PRC1-RYBP target genes are more highly expressed than PRC1-Cbx7 targets ? RYBP enhances PRC1 enzymatic activity, yet Cbx7 plays a pivotal role in PRC1 recruitment  相似文献   

18.
无血清无饲养层条件下培养小鼠胚胎干细胞   总被引:2,自引:0,他引:2  
目的研究在无血清无饲养层条件下小鼠胚胎干细胞的培养方法,为最终建立无血清无饲养层培养系统打下基础。方法比较小鼠胚胎干细胞ES-S8株在无血清培养体系和有血清培养体系中的生长情况,分析ES-S8细胞克隆形成效率,测定其生长速度;然后在撤去血清和饲养层的条件下培养ES-S8细胞,进行AKP染色和表面标记物SSEA-1免疫荧光检测。结果ES-S8细胞在无血清培养条件下细胞生长速度减缓,克隆形成率降低,但AKP染色、SSEA-1免疫荧光均显阳性;在无血清无饲养层条件下ES-S8细胞培养仍能形成克隆,且AKP染色、SSEA-1免疫荧光均显阳性。结论研究表明ES-S8细胞能够在无血清无饲养层的培养条件下生长,保持其良好的未分化特性。  相似文献   

19.
Human embryonic stem (hES) cells must be monitored and cared for in order to maintain healthy, undifferentiated cultures. At minimum, the cultures must be fed every day by performing a complete medium change to replenish lost nutrients and to keep the cultures free of unwanted differentiation factors. Although a small amount of differentiation is normal and expected in stem cell cultures, the culture should be routinely cleaned up by manually removing, or "picking" differentiated areas. Identifying and removing excess differentiation from hES cell cultures are essential techniques in the maintenance of a healthy population of cells.Download video file.(109M, mp4)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号