共查询到20条相似文献,搜索用时 0 毫秒
1.
Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory.
Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor
(GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility
complex proteins, IL-1β, and MIP-1β, all associated with the development of experimental autoimmune encephalomyelitis (EAE),
the animal model for multiple sclerosis. Based on GMF’s ability to activate microglia and induce well-established proinflammatory
mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this
present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease.
Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and
support the hypothesis that GMF plays a major role in the pathogenesis of disease. 相似文献
2.
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection. 相似文献
3.
4.
Rodolfo Thomé Adriel S. Moraes André Luis Bombeiro Alessandro dos Santos Farias Carolina Francelin Thiago Alves da Costa Rosária Di Gangi Leonilda Maria Barbosa dos Santos Alexandre Leite Rodrigues de Oliveira Liana Verinaud 《PloS one》2013,8(6)
Background
The modulation of inflammatory processes is a necessary step, mostly orchestrated by regulatory T (Treg) cells and suppressive Dendritic Cells (DCs), to prevent the development of deleterious responses and autoimmune diseases. Therapies that focused on adoptive transfer of Treg cells or their expansion in vivo achieved great success in controlling inflammation in several experimental models. Chloroquine (CQ), an anti-malarial drug, was shown to reduce inflammation, although the mechanisms are still obscure. In this context, we aimed to access whether chloroquine treatment alters the frequency of Treg cells and DCs in normal mice. In addition, the effects of the prophylactic and therapeutic treatment with CQ on Experimental Autoimmune Encephalomyelitis (EAE), an experimental model for human Multiple Sclerosis, was investigated as well.Methodology/Principal Findings
EAE was induced in C57BL/6 mice by immunization with myelin oligodendrocyte glycoprotein (MOG35–55) peptide. C57BL/6 mice were intraperitoneally treated with chloroquine. Results show that the CQ treatment provoked an increase in Treg cells frequency as well as a decrease in DCs. We next evaluated whether prophylactic CQ administration is capable of reducing the clinical and histopathological signs of EAE. Our results demonstrated that CQ-treated mice developed mild EAE compared to controls that was associated with lower infiltration of inflammatory cells in the central nervous system CNS) and increased frequency of Treg cells. Also, proliferation of MOG35–55-reactive T cells was significantly inhibited by chloroquine treatment. Similar results were observed when chloroquine was administrated after disease onset.Conclusion
We show for the first time that CQ treatment promotes the expansion of Treg cells, corroborating previous reports indicating that chloroquine has immunomodulatory properties. Our results also show that CQ treatment suppress the inflammation in the CNS of EAE-inflicted mice, both in prophylactic and therapeutic approaches. We hypothesized that the increased number of regulatory T cells induced by the CQ treatment is involved in the reduction of the clinical signs of EAE. 相似文献5.
Lei Zhang Rui-Jie Dang Hong Li Ping Li Yan-Mei Yang Xi-Min Guo Xiao-Yan Wang Nan-Zhu Fang Ning Mao Ning Wen Xiao-Xia Jiang 《PloS one》2014,9(5)
Mesenchymal stem cells (MSCs) have been shown to be highly immunosuppressive and have been employed to treat various immune disorders. However, the mechanisms underlying the immunosuppressive capacity of MSCs are not fully understood. We found the suppressor of cytokine signaling 1 (SOCS1) was induced in MSCs treated with inflammatory cytokines. Knockdown of SOCS1 did not bring much difference on the proliferation and differentiation properties of MSCs. However, MSCs with SOCS1 knockdown exhibited enhanced immunosuppressive capacity, showing as inhibiting T cell proliferation at extremely low ratio (MSC to T) in vitro, significantly promoting tumor growth and inhibiting delayed-type hypersensitivity response in vivo. We further demonstrated that SOCS1 inhibited the immunosuppressive capacity of MSCs by reducing inducible nitric oxide synthase (iNOS) expression. Additionally, we found the significantly lower SOCS1 expression and higher nitric oxide (NO) production in MSCs isolated from synovial fluid of rheumatoid arthritis patients. Collectively, our data revealed a novel role of SOCS1 in regulating the immune modulatory activities of MSCs. 相似文献
6.
Sarah E. Lutz Estibaliz González-Fernández Juan Carlos Chara Ventura Alberto Pérez-Samartín Leonid Tarassishin Hiromitsu Negoro Naman K. Patel Sylvia O. Suadicani Sunhee C. Lee Carlos Matute Eliana Scemes 《PloS one》2013,8(6)
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE. 相似文献
7.
Ik-Hwan Han Sung Young Goo Soon-Jung Park Se-Jin Hwang Yong-Seok Kim Michael Sungwoo Yang Myoung-Hee Ahn Jae-Sook Ryu 《The Korean journal of parasitology》2009,47(3):205-212
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis. 相似文献
8.
9.
Chunyun Liu Yanhua Li Jiezhong Yu Ling Feng Shaowei Hou Yueting Liu Mingfang Guo Yong Xie Jian Meng Haifei Zhang Baoguo Xiao Cungen Ma 《PloS one》2013,8(2)
We observed the therapeutic effect of Fasudil and explored its mechanisms in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Fasudil, a selective Rho kinase (ROCK) inhibitor, was injected intraperitoneally at 40 mg/kg/d in early and late stages of EAE induction. Fasudil ameliorated the clinical severity of EAE at different stages, and decreased the expression of ROCK-II in spleen, accompanied by an improvement in demyelination and inhibition of inflammatory cells. Fasudil mainly inhibited CD4+IL-17+ T cells in early treatment, but also elevated CD4+IL-10+ regulatory T cells and IL-10 production in late treatment. The treatment of Fasudil shifted inflammatory M1 to anti-inflammatory M2 macrophages in both early and late treatment, being shown by inhibiting CD16/32, iNOS, IL-12, TLR4 and CD40 and increasing CD206, Arg-1, IL-10 and CD14 in spleen. By using Western blot and immunohistochemistry, iNOS and Arg-1, as two most specific markers for M1 and M2, was inhibited or induced in splenic macrophages and spinal cords of EAE mice treated with Fasudil. In vitro experiments also indicate that Fasudil shifts M1 to M2 phenotype, which does not require the participation or auxiliary of other cells. The polarization of M2 macrophages was associated with the decrease of inflammatory cytokine IL-1β, TNF-α and MCP-1. These results demonstrate that Fasudil has therapeutic potential in EAE possibly through inducing the polarization of M2 macrophages and inhibiting inflammatory responses. 相似文献
10.
Gaurav Pandey Ekta Makhija Nelson George Bandana Chakravarti Madan M. Godbole Carolyn M. Ecelbarger Swasti Tiwari 《The Journal of biological chemistry》2015,290(9):5582-5591
The kidney is an important organ for arterial blood pressure (BP) maintenance. Reduced NO generation in the kidney is associated with hypertension in insulin resistance. NO is a critical regulator of vascular tone; however, whether insulin regulates NO production in the renal inner medullary collecting duct (IMCD), the segment with the greatest enzymatic activity for NO production in kidney, is not clear. Using an NO-sensitive 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescent dye, we found that insulin increased NO production in mouse IMCD cells (mIMCD) in a time- and dose-dependent manner. A concomitant dose-dependent increase in the NO metabolite (NOx) was also observed in the medium from insulin-stimulated cells. NO production peaked in mIMCD cells at a dose of 100 nm insulin with simultaneously increased NOx levels in the medium. At this dose, insulin significantly increased p-eNOSSer1177 levels in mIMCD cells. Pretreatment of cells with a PI 3-kinase inhibitor or insulin receptor silencing with RNA interference abolished these effects of insulin, whereas insulin-like growth factor-1 receptor (IGF-1R) silencing had no effect. We also showed that chronic insulin infusion to normal C57BL/6J mice resulted in increased endothelial NOS (eNOS) protein levels and NO production in the inner medulla. However, insulin-infused IRKO mice, with targeted deletion of insulin receptor from tubule epithelial cells of the kidney, had ∼50% reduced eNOS protein levels in their inner medulla along with a significant rise in BP relative to WT littermates. We have previously reported increased baseline BP and reduced urine NOx in IRKO mice. Thus, reduced insulin receptor signaling in IMCD could contribute to hypertension in the insulin-resistant state. 相似文献
11.
Monocyte chemoattractant protein 1 (MCP-1) is an important mediator of monocyte/macrophage recruitment and activation at the sites of chronic inflammation and neoplasia. In the current study, the role of nitrogen monoxide (NO) in the activation of murine peritoneal macrophages to the tumoricidal state in response to in vitro MCP-1 treatment and the regulatory mechanisms involved therein were investigated. Murine peritoneal macrophages upon activation with MCP-1 showed a dose- and time-dependent production of NO together with increased tumoricidal activity against P815 mastocytoma cells. N-monomethyl-
-arginine (L-NMMA), a specific inhibitor of the
-arginine pathway, inhibited the MCP-1-induced NO secretion and generation of macrophage-mediated tumoricidal activity against P815 (NO-sensitive, TNF-resistant) cells but not the L929 (TNF-sensitive, NO-resistant) cells. These results indicated
-arginine-dependent production of NO to be one of the effector mechanisms contributing to the tumoricidal activity of MCP-1-treated macrophages. Supporting this fact, expression of iNOS mRNA was also detected in the murine peritoneal macrophages upon treatment with MCP-1. Investigating the signal transduction pathway responsible for the NO production by the MCP-1-activated murine peritoneal macrophages, it was observed that the pharmacological inhibitors wortmannin, H-7 (1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride), and PD98059 blocked the MCP-1-induced NO production, suggesting the probable involvement of phosphoinositol-3-kinase, protein kinase C, and p42/44 MAPkinases in the above process. Various modulators of calcium and calmodulin (CaM) such as EGTA, nifedipine, TMB-8 (3,4,5-trimethoxybenzoic acid-8-(diethylamino)octyl ester), A23187, and W-7 (N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide) were also found to modulate the in vitro macrophage NO release in response to MCP-1. This observation indicated the regulatory role of calcium/CaM in the process of MCP-1-induced macrophage NO production. Similarly, the role of serine/threonine and protein tyrosine phosphatases in the above pathway was suggested using the specific inhibitors of these phosphatases, okadaic acid and sodium orthovanadate. 相似文献
12.
David O'Sullivan Laura Green Sarrabeth Stone Pirooz Zareie Marie Kharkrang Dahna Fong Bronwen Connor Anne Camille La Flamme 《PloS one》2014,9(8)
Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS. 相似文献
13.
Bum Ju Ahn Hoang Le Min Wook Shin Sung-Jin Bae Eun Ji Lee Hee-Jun Wee Jong-Ho Cha Hyo-Jong Lee Hye Shin Lee Jeong Hun Kim Chang-Yeon Kim Ji Hae Seo Eng H. Lo Sejin Jeon Mi-Ni Lee Goo Taeg Oh Guo Nan Yin Ji-Kan Ryu Jun-Kyu Suh Kyu-Won Kim 《The Journal of biological chemistry》2014,289(6):3328-3338
Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26–37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis. 相似文献
14.
15.
16.
Zaslavsky A Singh LS Tan H Ding H Liang Z Xu Y 《Biochimica et biophysica acta》2006,1761(10):1200-1212
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration. 相似文献
17.
18.
Chromoblastomycosis is a chronic and progressive deep mycosis that is usually found in tropical and subtropical areas. Fonsecaea pedrosoi is considered its most frequent etiologic agent and causes a typical granulomatous inflammatory response, whose degree reflects
the immune status of the host. Since macrophages play a fundamental role in the control of the infection, this study aimed
at investigating the production of oxygen reactive specimens, the phagocytic capacity and the production of nitric oxide (NO)
by macrophages employing in vitro assays and an in vivo model of chromoblastomycosis. Our results demonstrated that, during the infection, peritoneal macrophages show an increased
phagocytic capacity and H2O2 production, but also a reduced ability to produce NO. Moreover, F. pedrosoi stimulated H2O2 production in vitro but not the synthesis of NO. The incubation of IFNγ and LPS-stimulated macrophages with melanin, obtained from the fungus,
inhibited NO production. Examination of the liver and spleen of infected animals, at day 30 or 60 following inoculation, showed
a progressive increase in the number and size of granulomas, indicating that macrophages are properly mobilized and activated.
Our data suggest that the inability of the host to clear F. pedrosoi, leading to a chronic disease, is due, at least in part, to the inhibition of NO synthesis by macrophages by fungus-produced
melanin. 相似文献
19.
20.
Naoki Tokuhara Kana Namiki Mai Uesugi Chihiro Miyamoto Makoto Ohgoh Katsutoshi Ido Takashi Yoshinaga Toshihiko Yamauchi Junro Kuromitsu Sadao Kimura Norimasa Miyamoto Yoshitoshi Kasuya 《The Journal of biological chemistry》2010,285(43):33294-33306
One of the family of voltage-gated calcium channels (VGCC), the N-type Ca2+ channel, is located predominantly in neurons and is associated with a variety of neuronal responses, including neurodegeneration. A precise mechanism for how the N-type Ca2+ channel plays a role in neurodegenerative disease, however, is unknown. In this study, we immunized N-type Ca2+ channel α1B-deficient (α1B−/−) mice and their wild type (WT) littermates with myelin oligodendrocyte glycoprotein 35–55 and analyzed the progression of experimental autoimmune encephalomyelitis (EAE). The neurological symptoms of EAE in the α1B−/− mice were less severe than in the WT mice. In conjunction with these results, sections of the spinal cord (SC) from α1B−/− mice revealed a reduction in both leukocytic infiltration and demyelination compared with WT mice. No differences were observed in the delayed-type hypersensitivity response, spleen cell proliferation, or cytokine production from splenocytes between the two genotypes. On the other hand, Western blot array analysis and RT-PCR revealed that a typical increase in the expression of MCP-1 in the SC showed a good correlation with the infiltration of leukocytes into the SC. Likewise, immunohistochemical analysis showed that the predominant source of MCP-1 was activated microglia. The cytokine-induced production of MCP-1 in primary cultured microglia from WT mice was significantly higher than that from α1B−/− mice and was significantly inhibited by a selective N-type Ca2+ channel antagonist, ω-conotoxin GVIA or a withdrawal of extracellular Ca2+. These results suggest that the N-type Ca2+ channel is involved in the pathogenesis of EAE at least in part by regulating MCP-1 production by microglia. 相似文献