首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Embryonic Stem cells (ESCs) can be differentiated into ectoderm, endoderm, and mesoderm derivatives, producing the majority of cell types. In regular culture conditions, ESCs'' self-renewal is maintained through molecules that inhibit spontaneous differentiation enabling long-term cellular expansion. This undifferentiating condition is characterized by multiple metastable states that fluctuate between self-renewal and differentiation balance. Here, we aim to characterize the high-pluripotent ESC metastate marked by the expression of Zscan4 through a supervised machine learning framework based on an ensemble of support vector machine (SVM) classifiers. Our study revealed a leukaemia inhibitor factor (Lif) dependent not-canonical pluripotency signature (AF067063, BC061212, Dub1, Eif1a, Gm12794, Gm13871, Gm4340, Gm4850, Tcstv1/3, and Zfp352), that specifically marks Zscan4 ESCs'' fluctuation. This novel ESC metastate is enhanced by high-pluripotency culture conditions obtained through Extracellular signal Regulated-Kinase (ERK) and Glycogen synthase kinase-3 (Gsk-3) signaling inhibition (2i). Significantly, we reported that the conditional ablation of the novel ESC metastate marked by the expression of Gm12794 is required for ESCs self-renewal maintenance. In conclusion, we extend the comprehension of ESCs biology through the identification of a novel molecular signature associated to pluripotency programming.  相似文献   

2.
Embryonic stem cells (ESCs) are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal) and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency). Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA), pluripotency (Pou5f1), and pluripotency fluctuation (Nanog). We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the analysis on the control genes showed that they behave as expected.  相似文献   

3.
Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.  相似文献   

4.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

5.
The Wnt signaling pathway is highly conserved across metazoa and has pleiotropic functions in the development of many animals. Binding of a secreted Wnt ligand to its Frizzled (Fz) receptor activates Dishevelled, which then drives one of three major signaling cascades, canonical (β-catenin), calcium, or planar cell polarity signaling. These pathways have distinct developmental effects and function in different processes in different organisms. Here we report the expression of six wnt and three fz genes during embryogenesis of the sea star, Patiria miniata, as a first step in uncovering the roles of Wnt signaling in the development of this organism. wnt3, wnt4, wnt8, and wnt16 are expressed in nested domains in the endoderm and lateral ectoderm from blastula through late gastrula stages; wnt2 and wnt5 are expressed in the mesoderm and anterior endoderm. Expression of different fz paralogs is detected in the mesoderm; posterior endoderm and ectoderm; and anterior ectoderm. Taken together, this suggests that Wnt signaling can occur throughout most of the embryo and may therefore play multiple roles during sea star development.  相似文献   

6.
7.
Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1−/− ESCs that are deficient in HS. We found that Ext1−/− ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1−/− ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.  相似文献   

8.
9.
10.
11.
The future clinical use of embryonic stem cell (ESC)-based hepatocyte replacement therapy depends on the development of an efficient procedure for differentiation of hepatocytes from ESCs. Here we report that a high density of human ESC-derived fibroblast-like cells (hESdFs) supported the efficient generation of hepatocyte-like cells with functional and mature hepatic phenotypes from primate ESCs and human induced pluripotent stem cells. Molecular and immunocytochemistry analyses revealed that hESdFs caused a rapid loss of pluripotency and induced a sequential endoderm-to-hepatocyte differentiation in the central area of ESC colonies. Knockdown experiments demonstrated that pluripotent stem cells were directed toward endodermal and hepatic lineages by FGF2 and activin A secreted from hESdFs. Furthermore, we found that the central region of ESC colonies was essential for the hepatic endoderm-specific differentiation, because its removal caused a complete disruption of endodermal differentiation. In conclusion, we describe a novel in vitro differentiation model and show that hESdF-secreted factors act in concert with regional features of ESC colonies to induce robust hepatic endoderm differentiation in primate pluripotent stem cells.  相似文献   

12.

Background

REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods

Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results

We show that Rest+/− and Rest−/− AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/− and Rest−/− AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest−/− AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST''s role in ESC pluripotency.

Conclusions

REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.  相似文献   

13.
14.
15.

Background

Endoderm organ primordia become specified between gastrulation and gut tube folding in Amniotes. Although the requirement for RA signaling for the development of a few individual endoderm organs has been established a systematic assessment of its activity along the entire antero-posterior axis has not been performed in this germ layer.

Methodology/Principal Findings

RA is synthesized from gastrulation to somitogenesis in the mesoderm that is close to the developing gut tube. In the branchial arch region specific levels of RA signaling control organ boundaries. The most anterior endoderm forming the thyroid gland is specified in the absence of RA signaling. Increasing RA in anterior branchial arches results in thyroid primordium repression and the induction of more posterior markers such as branchial arch Hox genes. Conversely reducing RA signaling shifts Hox genes posteriorly in endoderm. These results imply that RA acts as a caudalizing factor in a graded manner in pharyngeal endoderm. Posterior foregut and midgut organ primordia also require RA, but exposing endoderm to additional RA is not sufficient to expand these primordia anteriorly. We show that in chick, in contrast to non-Amniotes, RA signaling is not only necessary during gastrulation, but also throughout gut tube folding during somitogenesis. Our results show that the induction of CdxA, a midgut marker, and pancreas induction require direct RA signaling in endoderm. Moreover, communication between CdxA + cells is necessary to maintain CdxA expression, therefore synchronizing the cells of the midgut primordium. We further show that the RA pathway acts synergistically with FGF4 in endoderm patterning rather than mediating FGF4 activity.

Conclusions/Significance

Our work establishes that retinoic acid (RA) signaling coordinates the position of different endoderm organs along the antero-posterior axis in chick embryos and could serve as a basis for the differentiation of specific endodermal organs from ES cells.  相似文献   

16.
We developed a feeder-free system for human embryonic stem cells (ESCs) based on extracellular matrix protein (ECM) as the substrate. ECM was synthesized by mesenchymal stem cells (SC5-MSC) derived from an original ESC line, SC5. The ECM proteins fibronectin and laminin facilitate ESC growth in the feeder-free system. An important component of this system is a conditioned medium from SC5-MSC cells. Two ESC sublines were obtained: SC5-FF cells were cultured in an autogenic, and SC7-FF in an allogenic, feeder-free system. SC5-FF and SC7-FF underwent more than 300 and 115 population doublings, respectively, and retain a normal diploid karyotype. Histochemical and immunofluorescence assays showed that both sublines express undifferentiated ESC markers—alkaline phosphatase, Oct-4, SSEA-4, and TRA-1-81—as well as multidrug resistance transporter ABCG2. PCR assay revealed that undifferentiated SC5-FF cells, like the original SC5 line, maintained on feeder cells express OCT4 and NANOG genes common for somatic cells and DPPA3/STELLA and DAZL genes common for germ line cells. Expression of these genes was gradually diminished during differentiation of embryoid bodies, whereas expression of genes specific for early differentiated cells increased: GATA4, AFP (extraembryonic and embryonic endoderm), PAX6 (neuroectoderm), and BRY (mesoderm). ESC properties (karyotype structure, average time of population doubling, undifferentiated cell number in population) of the SC5 and SC7 and SC5-FF and SC7-FF sublines derived from original ESCs were not altered. It shows that the feeder-free systems, which are more stable than any feeder systems, maintain key ESC properties and may be recommended for fundamental, biomedical, and pharmacological studies performed with human ESCs.  相似文献   

17.
来源于囊胚期胚胎内细胞团的胚胎干细胞具有独特的生物学特性,包括无限自我更新的能力以及分化为内胚层、中胚层和外胚层各种细胞的潜能.阐明胚胎干细胞全能性维持以及向各种特定细胞分化的分子机制,不仅有助于我们了解胚胎发育过程,而且将促进胚胎干细胞尽早应用于疾病治疗.本文主要就干细胞的一种命运决定过程,维持胚胎干细胞全能性或失去全能性开始分化,结合最新的研究进展讨论该过程中的分子调控网络,包括信号转导通路、表达调控网络以及表观遗传调控.  相似文献   

18.
19.
20.
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号